Challenge Level

PhysNRICH is the area of the StemNRICH site devoted to the mathematics underlying the study of physics

Challenge Level

engNRICH is the area of the stemNRICH Advanced site devoted to the mathematics underlying the study of engineering

Challenge Level

chemNRICH is the area of the stemNRICH site devoted to the mathematics underlying the study of chemistry, designed to help develop the mathematics required to get the most from your study. . . .

Challenge Level

Look at the calculus behind the simple act of a car going over a step.

Challenge Level

See how the motion of the simple pendulum is not-so-simple after all.

Challenge Level

Second in our series of problems on population dynamics for advanced students.

Challenge Level

Third in our series of problems on population dynamics for advanced students.

Challenge Level

This problem opens a major sequence of activities on the mathematics of population dynamics for advanced students.

Challenge Level

Fourth in our series of problems on population dynamics for advanced students.

Challenge Level

Fifth in our series of problems on population dynamics for advanced students.

Challenge Level

Sixth in our series of problems on population dynamics for advanced students.

Challenge Level

An advanced mathematical exploration supporting our series of articles on population dynamics for advanced students.

Challenge Level

Work in groups to try to create the best approximations to these physical quantities.

Challenge Level

This is our collection of tasks on the mathematical theme of 'Population Dynamics' for advanced students and those interested in mathematical modelling.

An article demonstrating mathematically how various physical modelling assumptions affect the solution to the seemingly simple problem of the projectile.

Challenge Level

See how differential equations might be used to make a realistic model of a system containing predators and their prey.

Challenge Level

bioNRICH is the area of the stemNRICH site devoted to the mathematics underlying the study of the biological sciences, designed to help develop the mathematics required to get the most from your. . . .

Challenge Level

First in our series of problems on population dynamics for advanced students.

Challenge Level

Why MUST these statistical statements probably be at least a little bit wrong?

In this article for teachers, Alan Parr looks at ways that mathematics teaching and learning can start from the useful and interesting things can we do with the subject, including. . . .

Challenge Level

Invent scenarios which would give rise to these probability density functions.

Challenge Level

This is the section of stemNRICH devoted to the advanced applied mathematics underlying the study of the sciences at higher levels

Challenge Level

An advanced mathematical exploration supporting our series of articles on population dynamics for advanced students.

This article for students introduces the idea of naming knots using numbers. You'll need some paper and something to write with handy!

Challenge Level

The probability that a passenger books a flight and does not turn up is 0.05. For an aeroplane with 400 seats how many tickets can be sold so that only 1% of flights are over-booked?

Challenge Level

Can you suggest a curve to fit some experimental data? Can you work out where the data might have come from?

Challenge Level

Given the graph of a supply network and the maximum capacity for flow in each section find the maximum flow across the network.

Challenge Level

In four years 2001 to 2004 Arsenal have been drawn against Chelsea in the FA cup and have beaten Chelsea every time. What was the probability of this? Lots of fractions in the calculations!

Challenge Level

How many eggs should a bird lay to maximise the number of chicks that will hatch? An introduction to optimisation.

Challenge Level

PhysNRICH is the area of the StemNRICH site devoted to the mathematics underlying the study of physics

Edward Wallace based his A Level Statistics Project on The Mean Game. Each picks 2 numbers. The winner is the player who picks a number closest to the mean of all the numbers picked.

How do you write a computer program that creates the illusion of stretching elastic bands between pegs of a Geoboard? The answer contains some surprising mathematics.

Challenge Level

Bricks are 20cm long and 10cm high. How high could an arch be built without mortar on a flat horizontal surface, to overhang by 1 metre? How big an overhang is it possible to make like this?

Challenge Level

Explain why, when moving heavy objects on rollers, the object moves twice as fast as the rollers. Try a similar experiment yourself.

Challenge Level

Formulate and investigate a simple mathematical model for the design of a table mat.

Investigate circuits and record your findings in this simple introduction to truth tables and logic.

An account of how mathematics is used in computer games including geometry, vectors, transformations, 3D graphics, graph theory and simulations.

Challenge Level

How is the length of time between the birth of an animal and the birth of its great great ... great grandparent distributed?

This is about a fiendishly difficult jigsaw and how to solve it using a computer program.

Challenge Level

Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.

Challenge Level

A player has probability 0.4 of winning a single game. What is his probability of winning a 'best of 15 games' tournament?

Challenge Level

Investigate how networks can be used to solve a problem for the 18th Century inhabitants of Konigsberg.

This article explains the concepts involved in scientific mathematical computing. It will be very useful and interesting to anyone interested in computer programming or mathematics.

Challenge Level

The shortest path between any two points on a snooker table is the straight line between them but what if the ball must bounce off one wall, or 2 walls, or 3 walls?

Challenge Level

How do scores on dice and factors of polynomials relate to each other?

Challenge Level

A car is travelling along a dual carriageway at constant speed. Every 3 minutes a bus passes going in the opposite direction, while every 6 minutes a bus passes the car travelling in the same. . . .

Challenge Level

Explore the transformations and comment on what you find.

Challenge Level

Your school has been left a million pounds in the will of an ex- pupil. What model of investment and spending would you use in order to ensure the best return on the money?

Challenge Level

If a is the radius of the axle, b the radius of each ball-bearing, and c the radius of the hub, why does the number of ball bearings n determine the ratio c/a? Find a formula for c/a in terms of n.