This article explains the concepts involved in scientific mathematical computing. It will be very useful and interesting to anyone interested in computer programming or mathematics.

The third installment in our series on the shape of astronomical systems, this article explores galaxies and the universe beyond our solar system.

This is about a fiendishly difficult jigsaw and how to solve it using a computer program.

How do you write a computer program that creates the illusion of stretching elastic bands between pegs of a Geoboard? The answer contains some surprising mathematics.

This article for students introduces the idea of naming knots using numbers. You'll need some paper and something to write with handy!

In this article for teachers, Alan Parr looks at ways that mathematics teaching and learning can start from the useful and interesting things can we do with the subject, including. . . .

Explain why, when moving heavy objects on rollers, the object moves twice as fast as the rollers. Try a similar experiment yourself.

Investigate circuits and record your findings in this simple introduction to truth tables and logic.

In four years 2001 to 2004 Arsenal have been drawn against Chelsea in the FA cup and have beaten Chelsea every time. What was the probability of this? Lots of fractions in the calculations!

Second in our series of problems on population dynamics for advanced students.

First in our series of problems on population dynamics for advanced students.

An advanced mathematical exploration supporting our series of articles on population dynamics for advanced students.

This problem opens a major sequence of activities on the mathematics of population dynamics for advanced students.

Given the graph of a supply network and the maximum capacity for flow in each section find the maximum flow across the network.

Invent scenarios which would give rise to these probability density functions.

Look at the calculus behind the simple act of a car going over a step.

Explore the transformations and comment on what you find.

How do these modelling assumption affect the solutions?

Why MUST these statistical statements probably be at least a little bit wrong?

An article demonstrating mathematically how various physical modelling assumptions affect the solution to the seemingly simple problem of the projectile.

See how differential equations might be used to make a realistic model of a system containing predators and their prey.

chemNRICH is the area of the stemNRICH site devoted to the mathematics underlying the study of chemistry, designed to help develop the mathematics required to get the most from your study. . . .

Fourth in our series of problems on population dynamics for advanced students.

This article explores ths history of theories about the shape of our planet. It is the first in a series of articles looking at the significance of geometric shapes in the history of astronomy.

Sixth in our series of problems on population dynamics for advanced students.

See how the motion of the simple pendulum is not-so-simple after all.

Work in groups to try to create the best approximations to these physical quantities.

engNRICH is the area of the stemNRICH Advanced site devoted to the mathematics underlying the study of engineering

This is our collection of tasks on the mathematical theme of 'Population Dynamics' for advanced students and those interested in mathematical modelling.

An advanced mathematical exploration supporting our series of articles on population dynamics for advanced students.

PhysNRICH is the area of the StemNRICH site devoted to the mathematics underlying the study of physics

The probability that a passenger books a flight and does not turn up is 0.05. For an aeroplane with 400 seats how many tickets can be sold so that only 1% of flights are over-booked?

The second in a series of articles on visualising and modelling shapes in the history of astronomy.

bioNRICH is the area of the stemNRICH site devoted to the mathematics underlying the study of the biological sciences, designed to help develop the mathematics required to get the most from your. . . .

Bricks are 20cm long and 10cm high. How high could an arch be built without mortar on a flat horizontal surface, to overhang by 1 metre? How big an overhang is it possible to make like this?

Fifth in our series of problems on population dynamics for advanced students.

Edward Wallace based his A Level Statistics Project on The Mean Game. Each picks 2 numbers. The winner is the player who picks a number closest to the mean of all the numbers picked.

An account of how mathematics is used in computer games including geometry, vectors, transformations, 3D graphics, graph theory and simulations.

Third in our series of problems on population dynamics for advanced students.

This is the section of stemNRICH devoted to the advanced applied mathematics underlying the study of the sciences at higher levels

What shapes should Elly cut out to make a witch's hat? How can she make a taller hat?

How many eggs should a bird lay to maximise the number of chicks that will hatch? An introduction to optimisation.

To win on a scratch card you have to uncover three numbers that add up to more than fifteen. What is the probability of winning a prize?

How is the length of time between the birth of an animal and the birth of its great great ... great grandparent distributed?

Can you suggest a curve to fit some experimental data? Can you work out where the data might have come from?

A player has probability 0.4 of winning a single game. What is his probability of winning a 'best of 15 games' tournament?

Formulate and investigate a simple mathematical model for the design of a table mat.

PhysNRICH is the area of the StemNRICH site devoted to the mathematics underlying the study of physics

Fancy a game of cricket? Here is a mathematical version you can play indoors without breaking any windows.

Simple models which help us to investigate how epidemics grow and die out.