Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.

Can you cross each of the seven bridges that join the north and south of the river to the two islands, once and once only, without retracing your steps?

Basic strategy games are particularly suitable as starting points for investigations. Players instinctively try to discover a winning strategy, and usually the best way to do this is to analyse. . . .

In how many distinct ways can six islands be joined by bridges so that each island can be reached from every other island...

It is possible to identify a particular card out of a pack of 15 with the use of some mathematical reasoning. What is this reasoning and can it be applied to other numbers of cards?

Suppose you are a bellringer. Can you find the changes so that, starting and ending with a round, all the 24 possible permutations are rung once each and only once?

A bus route has a total duration of 40 minutes. Every 10 minutes, two buses set out, one from each end. How many buses will one bus meet on its way from one end to the other end?

On a clock the three hands - the second, minute and hour hands - are on the same axis. How often in a 24 hour day will the second hand be parallel to either of the two other hands?

Every day at noon a boat leaves Le Havre for New York while another boat leaves New York for Le Havre. The ocean crossing takes seven days. How many boats will each boat cross during their journey?

Blue Flibbins are so jealous of their red partners that they will not leave them on their own with any other bue Flibbin. What is the quickest way of getting the five pairs of Flibbins safely to. . . .

Your partner chooses two beads and places them side by side behind a screen. What is the minimum number of guesses you would need to be sure of guessing the two beads and their positions?

Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.

32 x 38 = 30 x 40 + 2 x 8; 34 x 36 = 30 x 40 + 4 x 6; 56 x 54 = 50 x 60 + 6 x 4; 73 x 77 = 70 x 80 + 3 x 7 Verify and generalise if possible.

In a league of 5 football teams which play in a round robin tournament show that it is possible for all five teams to be league leaders.

To win on a scratch card you have to uncover three numbers that add up to more than fifteen. What is the probability of winning a prize?

Can you explain why every year must contain at least one Friday the thirteenth?

Sometime during every hour the minute hand lies directly above the hour hand. At what time between 4 and 5 o'clock does this happen?

Christmas trees are planted in a rectangular array. Which is the taller tree, A or B?

If it takes four men one day to build a wall, how long does it take 60,000 men to build a similar wall?

This article for pupils gives an introduction to Celtic knotwork patterns and a feel for how you can draw them.

Many natural systems appear to be in equilibrium until suddenly a critical point is reached, setting up a mudslide or an avalanche or an earthquake. In this project, students will use a simple. . . .

Mike and Monisha meet at the race track, which is 400m round. Just to make a point, Mike runs anticlockwise whilst Monisha runs clockwise. Where will they meet on their way around and will they ever. . . .

Investigate circuits and record your findings in this simple introduction to truth tables and logic.

A ladder 3m long rests against a wall with one end a short distance from its base. Between the wall and the base of a ladder is a garden storage box 1m tall and 1m high. What is the maximum distance. . . .

Chris is enjoying a swim but needs to get back for lunch. If she can swim at 3 m/s and run at 7m/sec, how far along the bank should she land in order to get back as quickly as possible?

This article explores ths history of theories about the shape of our planet. It is the first in a series of articles looking at the significance of geometric shapes in the history of astronomy.

The second in a series of articles on visualising and modelling shapes in the history of astronomy.

Build a scaffold out of drinking-straws to support a cup of water

At Holborn underground station there is a very long escalator. Two people are in a hurry and so climb the escalator as it is moving upwards, thus adding their speed to that of the moving steps. . . .

This article for students introduces the idea of naming knots using numbers. You'll need some paper and something to write with handy!

A brief video explaining the idea of a mathematical knot.

This article for students gives some instructions about how to make some different braids.

Can you find the lap times of the two cyclists travelling at constant speeds?

The King showed the Princess a map of the maze and the Princess was allowed to decide which room she would wait in. She was not allowed to send a copy to her lover who would have to guess which path. . . .

First of all, pick the number of times a week that you would like to eat chocolate. Multiply this number by 2...

In this article for teachers, Alan Parr looks at ways that mathematics teaching and learning can start from the useful and interesting things can we do with the subject, including. . . .

Can you suggest a curve to fit some experimental data? Can you work out where the data might have come from?

Formulate and investigate a simple mathematical model for the design of a table mat.

What shapes should Elly cut out to make a witch's hat? How can she make a taller hat?

Simple models which help us to investigate how epidemics grow and die out.

How does the time of dawn and dusk vary? What about the Moon, how does that change from night to night? Is the Sun always the same? Gather data to help you explore these questions.

The triathlon is a physically gruelling challenge. Can you work out which athlete burnt the most calories?

Fancy a game of cricket? Here is a mathematical version you can play indoors without breaking any windows.

PhysNRICH is the area of the StemNRICH site devoted to the mathematics underlying the study of physics

A car is travelling along a dual carriageway at constant speed. Every 3 minutes a bus passes going in the opposite direction, while every 6 minutes a bus passes the car travelling in the same. . . .

PhysNRICH is the area of the StemNRICH site devoted to the mathematics underlying the study of physics

bioNRICH is the area of the stemNRICH site devoted to the mathematics underlying the study of the biological sciences, designed to help develop the mathematics required to get the most from your. . . .

chemNRICH is the area of the stemNRICH site devoted to the mathematics underlying the study of chemistry, designed to help develop the mathematics required to get the most from your study. . . .

Explore the transformations and comment on what you find.