Investigate sequences given by $a_n = \frac{1+a_{n-1}}{a_{n-2}}$ for different choices of the first two terms. Make a conjecture about the behaviour of these sequences. Can you prove your conjecture?

Can you find the values at the vertices when you know the values on the edges of these multiplication arithmagons?

Beautiful mathematics. Two 18 year old students gave eight different proofs of one result then generalised it from the 3 by 1 case to the n by 1 case and proved the general result.

These gnomons appear to have more than a passing connection with the Fibonacci sequence. This problem ask you to investigate some of these connections.

For which values of n is the Fibonacci number fn even? Which Fibonnaci numbers are divisible by 3?

A game for 2 players. Set out 16 counters in rows of 1,3,5 and 7. Players take turns to remove any number of counters from a row. The player left with the last counter looses.

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

This article by Alex Goodwin, age 18 of Madras College, St Andrews describes how to find the sum of 1 + 22 + 333 + 4444 + ... to n terms.

Many numbers can be expressed as the difference of two perfect squares. What do you notice about the numbers you CANNOT make?

Pick a square within a multiplication square and add the numbers on each diagonal. What do you notice?

Given that a, b and c are natural numbers show that if sqrt a+sqrt b is rational then it is a natural number. Extend this to 3 variables.

A game for 2 players with similarities to NIM. Place one counter on each spot on the games board. Players take it is turns to remove 1 or 2 adjacent counters. The winner picks up the last counter.

If for any triangle ABC tan(A - B) + tan(B - C) + tan(C - A) = 0 what can you say about the triangle?

Can you work out the irrational numbers that belong in the circles to make the multiplication arithmagon correct?

Generalise the sum of a GP by using derivatives to make the coefficients into powers of the natural numbers.

Janine noticed, while studying some cube numbers, that if you take three consecutive whole numbers and multiply them together and then add the middle number of the three, you get the middle number. . . .

When if ever do you get the right answer if you add two fractions by adding the numerators and adding the denominators?

Make and prove a conjecture about the cyclic quadrilateral inscribed in a circle of radius r that has the maximum perimeter and the maximum area.

Build gnomons that are related to the Fibonacci sequence and try to explain why this is possible.

An article for teachers and pupils that encourages you to look at the mathematical properties of similar games.

Charlie has moved between countries and the average income of both has increased. How can this be so?

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

Polygons drawn on square dotty paper have dots on their perimeter (p) and often internal (i) ones as well. Find a relationship between p, i and the area of the polygons.

It would be nice to have a strategy for disentangling any tangled ropes...

Choose four consecutive whole numbers. Multiply the first and last numbers together. Multiply the middle pair together. What do you notice?

Jo has three numbers which she adds together in pairs. When she does this she has three different totals: 11, 17 and 22 What are the three numbers Jo had to start with?”

What would you get if you continued this sequence of fraction sums? 1/2 + 2/1 = 2/3 + 3/2 = 3/4 + 4/3 =

Take any two positive numbers. Calculate the arithmetic and geometric means. Repeat the calculations to generate a sequence of arithmetic means and geometric means. Make a note of what happens to the. . . .

What's the largest volume of box you can make from a square of paper?

Can you see how to build a harmonic triangle? Can you work out the next two rows?

Start with any number of counters in any number of piles. 2 players take it in turns to remove any number of counters from a single pile. The loser is the player who takes the last counter.

Use the animation to help you work out how many lines are needed to draw mystic roses of different sizes.

Some students have been working out the number of strands needed for different sizes of cable. Can you make sense of their solutions?

Can you find the values at the vertices when you know the values on the edges?

Can you explain the surprising results Jo found when she calculated the difference between square numbers?

Fractional calculus is a generalisation of ordinary calculus where you can differentiate n times when n is not a whole number.

Can you show that you can share a square pizza equally between two people by cutting it four times using vertical, horizontal and diagonal cuts through any point inside the square?

Here explore some ideas of how the definitions and methods of calculus change if you integrate or differentiate n times when n is not a whole number.

An account of some magic squares and their properties and and how to construct them for yourself.

What is the total number of squares that can be made on a 5 by 5 geoboard?

Is there a relationship between the coordinates of the endpoints of a line and the number of grid squares it crosses?

A counter is placed in the bottom right hand corner of a grid. You toss a coin and move the star according to the following rules: ... What is the probability that you end up in the top left-hand. . . .

Your data is a set of positive numbers. What is the maximum value that the standard deviation can take?

To avoid losing think of another very well known game where the patterns of play are similar.