Given a set of points (x,y) with distinct x values, find a polynomial that goes through all of them, then prove some results about the existence and uniqueness of these polynomials.
Some students have been working out the number of strands needed for different sizes of cable. Can you make sense of their solutions?
Given that a, b and c are natural numbers show that if sqrt a+sqrt b is rational then it is a natural number. Extend this to 3 variables.
Caroline and James pick sets of five numbers. Charlie chooses three of them that add together to make a multiple of three. Can they stop him?
Jo has three numbers which she adds together in pairs. When she does this she has three different totals: 11, 17 and 22 What are the three numbers Jo had to start with?”
Investigate sequences given by $a_n = \frac{1+a_{n-1}}{a_{n-2}}$ for different choices of the first two terms. Make a conjecture about the behaviour of these sequences. Can you prove your conjecture?
Start with any number of counters in any number of piles. 2 players take it in turns to remove any number of counters from a single pile. The loser is the player who takes the last counter.
When if ever do you get the right answer if you add two fractions by adding the numerators and adding the denominators?
If for any triangle ABC tan(A - B) + tan(B - C) + tan(C - A) = 0 what can you say about the triangle?
An article for teachers and pupils that encourages you to look at the mathematical properties of similar games.
The triangle OMN has vertices on the axes with whole number co-ordinates. How many points with whole number coordinates are there on the hypotenuse MN?
Imagine a large cube made from small red cubes being dropped into a pot of yellow paint. How many of the small cubes will have yellow paint on their faces?
Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.
A game for 2 players. Set out 16 counters in rows of 1,3,5 and 7. Players take turns to remove any number of counters from a row. The player left with the last counter looses.
Generalise the sum of a GP by using derivatives to make the coefficients into powers of the natural numbers.
This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.
A game for 2 players with similarities to NIM. Place one counter on each spot on the games board. Players take it is turns to remove 1 or 2 adjacent counters. The winner picks up the last counter.
It would be nice to have a strategy for disentangling any tangled ropes...
Can you find the values at the vertices when you know the values on the edges?
To avoid losing think of another very well known game where the patterns of play are similar.
Can you find the values at the vertices when you know the values on the edges of these multiplication arithmagons?
Jo made a cube from some smaller cubes, painted some of the faces of the large cube, and then took it apart again. 45 small cubes had no paint on them at all. How many small cubes did Jo use?
Build gnomons that are related to the Fibonacci sequence and try to explain why this is possible.
Use the animation to help you work out how many lines are needed to draw mystic roses of different sizes.
The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.
Your data is a set of positive numbers. What is the maximum value that the standard deviation can take?
What's the largest volume of box you can make from a square of paper?
The opposite vertices of a square have coordinates (a,b) and (c,d). What are the coordinates of the other vertices?
Janine noticed, while studying some cube numbers, that if you take three consecutive whole numbers and multiply them together and then add the middle number of the three, you get the middle number. . . .
Can you see how to build a harmonic triangle? Can you work out the next two rows?
What is the value of the integers a and b where sqrt(8-4sqrt3) = sqrt a - sqrt b?
Pick a square within a multiplication square and add the numbers on each diagonal. What do you notice?
If you have a large supply of 3kg and 8kg weights, how many of each would you need for the average (mean) of the weights to be 6kg?
Triangle ABC is an equilateral triangle with three parallel lines going through the vertices. Calculate the length of the sides of the triangle if the perpendicular distances between the parallel. . . .
Make and prove a conjecture about the cyclic quadrilateral inscribed in a circle of radius r that has the maximum perimeter and the maximum area.
Can you explain the surprising results Jo found when she calculated the difference between square numbers?
Charlie has moved between countries and the average income of both has increased. How can this be so?
Choose four consecutive whole numbers. Multiply the first and last numbers together. Multiply the middle pair together. What do you notice?
Sets of integers like 3, 4, 5 are called Pythagorean Triples, because they could be the lengths of the sides of a right-angled triangle. Can you find any more?
What would you get if you continued this sequence of fraction sums? 1/2 + 2/1 = 2/3 + 3/2 = 3/4 + 4/3 =
What is the ratio of the area of a square inscribed in a semicircle to the area of the square inscribed in the entire circle?
Take any two positive numbers. Calculate the arithmetic and geometric means. Repeat the calculations to generate a sequence of arithmetic means and geometric means. Make a note of what happens to the. . . .
First of all, pick the number of times a week that you would like to eat chocolate. Multiply this number by 2...
Can you show that you can share a square pizza equally between two people by cutting it four times using vertical, horizontal and diagonal cuts through any point inside the square?
What is the total number of squares that can be made on a 5 by 5 geoboard?