The incircles of 3, 4, 5 and of 5, 12, 13 right angled triangles have radii 1 and 2 units respectively. What about triangles with an inradius of 3, 4 or 5 or ...?

What is the ratio of the area of a square inscribed in a semicircle to the area of the square inscribed in the entire circle?

If a is the radius of the axle, b the radius of each ball-bearing, and c the radius of the hub, why does the number of ball bearings n determine the ratio c/a? Find a formula for c/a in terms of n.

Equal touching circles have centres on a line. From a point of this line on a circle, a tangent is drawn to the farthest circle. Find the lengths of chords where the line cuts the other circles.

ABC and DEF are equilateral triangles of side 3 and 4 respectively. Construct an equilateral triangle whose area is the sum of the area of ABC and DEF.

Make and prove a conjecture about the cyclic quadrilateral inscribed in a circle of radius r that has the maximum perimeter and the maximum area.

If for any triangle ABC tan(A - B) + tan(B - C) + tan(C - A) = 0 what can you say about the triangle?

Show that for any triangle it is always possible to construct 3 touching circles with centres at the vertices. Is it possible to construct touching circles centred at the vertices of any polygon?

An account of some magic squares and their properties and and how to construct them for yourself.

What is the value of the integers a and b where sqrt(8-4sqrt3) = sqrt a - sqrt b?

What is the volume of the solid formed by rotating this right angled triangle about the hypotenuse?

If you continue the pattern, can you predict what each of the following areas will be? Try to explain your prediction.

Can you find a general rule for finding the areas of equilateral triangles drawn on an isometric grid?

Polygons drawn on square dotty paper have dots on their perimeter (p) and often internal (i) ones as well. Find a relationship between p, i and the area of the polygons.

Triangle ABC is an equilateral triangle with three parallel lines going through the vertices. Calculate the length of the sides of the triangle if the perpendicular distances between the parallel. . . .

Can you show that you can share a square pizza equally between two people by cutting it four times using vertical, horizontal and diagonal cuts through any point inside the square?

Here explore some ideas of how the definitions and methods of calculus change if you integrate or differentiate n times when n is not a whole number.

You can differentiate and integrate n times but what if n is not a whole number? This generalisation of calculus was introduced and discussed on askNRICH by some school students.

Janine noticed, while studying some cube numbers, that if you take three consecutive whole numbers and multiply them together and then add the middle number of the three, you get the middle number. . . .

Jo made a cube from some smaller cubes, painted some of the faces of the large cube, and then took it apart again. 45 small cubes had no paint on them at all. How many small cubes did Jo use?

Pick a square within a multiplication square and add the numbers on each diagonal. What do you notice?

Beautiful mathematics. Two 18 year old students gave eight different proofs of one result then generalised it from the 3 by 1 case to the n by 1 case and proved the general result.

An article for teachers and pupils that encourages you to look at the mathematical properties of similar games.

When if ever do you get the right answer if you add two fractions by adding the numerators and adding the denominators?

Imagine a large cube made from small red cubes being dropped into a pot of yellow paint. How many of the small cubes will have yellow paint on their faces?

Generalise the sum of a GP by using derivatives to make the coefficients into powers of the natural numbers.

Given a set of points (x,y) with distinct x values, find a polynomial that goes through all of them, then prove some results about the existence and uniqueness of these polynomials.

Can you find the values at the vertices when you know the values on the edges of these multiplication arithmagons?

Can you work out the irrational numbers that belong in the circles to make the multiplication arithmagon correct?

Sets of integers like 3, 4, 5 are called Pythagorean Triples, because they could be the lengths of the sides of a right-angled triangle. Can you find any more?

Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.

Take any two positive numbers. Calculate the arithmetic and geometric means. Repeat the calculations to generate a sequence of arithmetic means and geometric means. Make a note of what happens to the. . . .

Some students have been working out the number of strands needed for different sizes of cable. Can you make sense of their solutions?

This article by Alex Goodwin, age 18 of Madras College, St Andrews describes how to find the sum of 1 + 22 + 333 + 4444 + ... to n terms.

Given that a, b and c are natural numbers show that if sqrt a+sqrt b is rational then it is a natural number. Extend this to 3 variables.

Fractional calculus is a generalisation of ordinary calculus where you can differentiate n times when n is not a whole number.

The opposite vertices of a square have coordinates (a,b) and (c,d). What are the coordinates of the other vertices?

Your data is a set of positive numbers. What is the maximum value that the standard deviation can take?

A game for 2 players with similarities to NIM. Place one counter on each spot on the games board. Players take it is turns to remove 1 or 2 adjacent counters. The winner picks up the last counter.

For which values of n is the Fibonacci number fn even? Which Fibonnaci numbers are divisible by 3?

Can you find the area of a parallelogram defined by two vectors?

What is the total number of squares that can be made on a 5 by 5 geoboard?

First of all, pick the number of times a week that you would like to eat chocolate. Multiply this number by 2...

Many numbers can be expressed as the difference of two perfect squares. What do you notice about the numbers you CANNOT make?

Investigate sequences given by $a_n = \frac{1+a_{n-1}}{a_{n-2}}$ for different choices of the first two terms. Make a conjecture about the behaviour of these sequences. Can you prove your conjecture?

A counter is placed in the bottom right hand corner of a grid. You toss a coin and move the star according to the following rules: ... What is the probability that you end up in the top left-hand. . . .