Your data is a set of positive numbers. What is the maximum value that the standard deviation can take?

Charlie has moved between countries and the average income of both has increased. How can this be so?

Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.

Here explore some ideas of how the definitions and methods of calculus change if you integrate or differentiate n times when n is not a whole number.

If a is the radius of the axle, b the radius of each ball-bearing, and c the radius of the hub, why does the number of ball bearings n determine the ratio c/a? Find a formula for c/a in terms of n.

First of all, pick the number of times a week that you would like to eat chocolate. Multiply this number by 2...

You can differentiate and integrate n times but what if n is not a whole number? This generalisation of calculus was introduced and discussed on askNRICH by some school students.

Generalise the sum of a GP by using derivatives to make the coefficients into powers of the natural numbers.

Can you find the area of a parallelogram defined by two vectors?

This article by Alex Goodwin, age 18 of Madras College, St Andrews describes how to find the sum of 1 + 22 + 333 + 4444 + ... to n terms.

The triangle OMN has vertices on the axes with whole number co-ordinates. How many points with whole number coordinates are there on the hypotenuse MN?

Some students have been working out the number of strands needed for different sizes of cable. Can you make sense of their solutions?

If for any triangle ABC tan(A - B) + tan(B - C) + tan(C - A) = 0 what can you say about the triangle?

Start with any number of counters in any number of piles. 2 players take it in turns to remove any number of counters from a single pile. The loser is the player who takes the last counter.

When if ever do you get the right answer if you add two fractions by adding the numerators and adding the denominators?

An article for teachers and pupils that encourages you to look at the mathematical properties of similar games.

Take any two positive numbers. Calculate the arithmetic and geometric means. Repeat the calculations to generate a sequence of arithmetic means and geometric means. Make a note of what happens to the. . . .

Imagine a large cube made from small red cubes being dropped into a pot of yellow paint. How many of the small cubes will have yellow paint on their faces?

A game for 2 players. Set out 16 counters in rows of 1,3,5 and 7. Players take turns to remove any number of counters from a row. The player left with the last counter looses.

A game for 2 players with similarities to NIM. Place one counter on each spot on the games board. Players take it is turns to remove 1 or 2 adjacent counters. The winner picks up the last counter.

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

Build gnomons that are related to the Fibonacci sequence and try to explain why this is possible.

Jo made a cube from some smaller cubes, painted some of the faces of the large cube, and then took it apart again. 45 small cubes had no paint on them at all. How many small cubes did Jo use?

Use the animation to help you work out how many lines are needed to draw mystic roses of different sizes.

To avoid losing think of another very well known game where the patterns of play are similar.

Bricks are 20cm long and 10cm high. How high could an arch be built without mortar on a flat horizontal surface, to overhang by 1 metre? How big an overhang is it possible to make like this?

The opposite vertices of a square have coordinates (a,b) and (c,d). What are the coordinates of the other vertices?

Fractional calculus is a generalisation of ordinary calculus where you can differentiate n times when n is not a whole number.

What's the largest volume of box you can make from a square of paper?

Jo has three numbers which she adds together in pairs. When she does this she has three different totals: 11, 17 and 22 What are the three numbers Jo had to start with?”

Caroline and James pick sets of five numbers. Charlie chooses three of them that add together to make a multiple of three. Can they stop him?

Make and prove a conjecture about the cyclic quadrilateral inscribed in a circle of radius r that has the maximum perimeter and the maximum area.

Can you see how to build a harmonic triangle? Can you work out the next two rows?

Can you explain the surprising results Jo found when she calculated the difference between square numbers?

It would be nice to have a strategy for disentangling any tangled ropes...

Can you find the values at the vertices when you know the values on the edges?

Can you find the values at the vertices when you know the values on the edges of these multiplication arithmagons?

Can you work out the irrational numbers that belong in the circles to make the multiplication arithmagon correct?

Sets of integers like 3, 4, 5 are called Pythagorean Triples, because they could be the lengths of the sides of a right-angled triangle. Can you find any more?

Given a set of points (x,y) with distinct x values, find a polynomial that goes through all of them, then prove some results about the existence and uniqueness of these polynomials.

Choose four consecutive whole numbers. Multiply the first and last numbers together. Multiply the middle pair together. What do you notice?

Pick a square within a multiplication square and add the numbers on each diagonal. What do you notice?

What is the ratio of the area of a square inscribed in a semicircle to the area of the square inscribed in the entire circle?

What would you get if you continued this sequence of fraction sums? 1/2 + 2/1 = 2/3 + 3/2 = 3/4 + 4/3 =