What is the total number of squares that can be made on a 5 by 5 geoboard?

Janine noticed, while studying some cube numbers, that if you take three consecutive whole numbers and multiply them together and then add the middle number of the three, you get the middle number. . . .

Many numbers can be expressed as the difference of two perfect squares. What do you notice about the numbers you CANNOT make?

Jo has three numbers which she adds together in pairs. When she does this she has three different totals: 11, 17 and 22 What are the three numbers Jo had to start with?”

These gnomons appear to have more than a passing connection with the Fibonacci sequence. This problem ask you to investigate some of these connections.

Pick a square within a multiplication square and add the numbers on each diagonal. What do you notice?

Choose four consecutive whole numbers. Multiply the first and last numbers together. Multiply the middle pair together. What do you notice?

What would you get if you continued this sequence of fraction sums? 1/2 + 2/1 = 2/3 + 3/2 = 3/4 + 4/3 =

The opposite vertices of a square have coordinates (a,b) and (c,d). What are the coordinates of the other vertices?

Jo made a cube from some smaller cubes, painted some of the faces of the large cube, and then took it apart again. 45 small cubes had no paint on them at all. How many small cubes did Jo use?

Can you find a general rule for finding the areas of equilateral triangles drawn on an isometric grid?

Can you show that you can share a square pizza equally between two people by cutting it four times using vertical, horizontal and diagonal cuts through any point inside the square?

Some students have been working out the number of strands needed for different sizes of cable. Can you make sense of their solutions?

Imagine a large cube made from small red cubes being dropped into a pot of yellow paint. How many of the small cubes will have yellow paint on their faces?

It would be nice to have a strategy for disentangling any tangled ropes...

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

What is the ratio of the area of a square inscribed in a semicircle to the area of the square inscribed in the entire circle?

Triangle ABC is an equilateral triangle with three parallel lines going through the vertices. Calculate the length of the sides of the triangle if the perpendicular distances between the parallel. . . .

Can you find sets of sloping lines that enclose a square?

Polygons drawn on square dotty paper have dots on their perimeter (p) and often internal (i) ones as well. Find a relationship between p, i and the area of the polygons.

Can you dissect a square into: 4, 7, 10, 13... other squares? 6, 9, 12, 15... other squares? 8, 11, 14... other squares?

Charlie likes tablecloths that use as many colours as possible, but insists that his tablecloths have some symmetry. Can you work out how many colours he needs for different tablecloth designs?

A game for 2 players. Set out 16 counters in rows of 1,3,5 and 7. Players take turns to remove any number of counters from a row. The player left with the last counter looses.

Take any two positive numbers. Calculate the arithmetic and geometric means. Repeat the calculations to generate a sequence of arithmetic means and geometric means. Make a note of what happens to the. . . .

What are the areas of these triangles? What do you notice? Can you generalise to other "families" of triangles?

Spotting patterns can be an important first step - explaining why it is appropriate to generalise is the next step, and often the most interesting and important.

An article for teachers and pupils that encourages you to look at the mathematical properties of similar games.

Start with any number of counters in any number of piles. 2 players take it in turns to remove any number of counters from a single pile. The loser is the player who takes the last counter.

Can you find the values at the vertices when you know the values on the edges?

Charlie has moved between countries and the average income of both has increased. How can this be so?

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

Can you see how to build a harmonic triangle? Can you work out the next two rows?

Use the animation to help you work out how many lines are needed to draw mystic roses of different sizes.

Can you find an efficient method to work out how many handshakes there would be if hundreds of people met?

Can you explain the surprising results Jo found when she calculated the difference between square numbers?

Can you find the values at the vertices when you know the values on the edges of these multiplication arithmagons?

Sets of integers like 3, 4, 5 are called Pythagorean Triples, because they could be the lengths of the sides of a right-angled triangle. Can you find any more?

Can you describe this route to infinity? Where will the arrows take you next?

The diagram illustrates the formula: 1 + 3 + 5 + ... + (2n - 1) = n² Use the diagram to show that any odd number is the difference of two squares.

I added together some of my neighbours' house numbers. Can you explain the patterns I noticed?

Make some loops out of regular hexagons. What rules can you discover?

What would be the smallest number of moves needed to move a Knight from a chess set from one corner to the opposite corner of a 99 by 99 square board?

With one cut a piece of card 16 cm by 9 cm can be made into two pieces which can be rearranged to form a square 12 cm by 12 cm. Explain how this can be done.

Is there a relationship between the coordinates of the endpoints of a line and the number of grid squares it crosses?

Take a look at the multiplication square. The first eleven triangle numbers have been identified. Can you see a pattern? Does the pattern continue?

A red square and a blue square overlap so that the corner of the red square rests on the centre of the blue square. Show that, whatever the orientation of the red square, it covers a quarter of the. . . .