How could Penny, Tom and Matthew work out how many chocolates there are in different sized boxes?

What would be the smallest number of moves needed to move a Knight from a chess set from one corner to the opposite corner of a 99 by 99 square board?

Rectangles are considered different if they vary in size or have different locations. How many different rectangles can be drawn on a chessboard?

A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?

Can you dissect a square into: 4, 7, 10, 13... other squares? 6, 9, 12, 15... other squares? 8, 11, 14... other squares?

If you can copy a network without lifting your pen off the paper and without drawing any line twice, then it is traversable. Decide which of these diagrams are traversable.

Square numbers can be represented as the sum of consecutive odd numbers. What is the sum of 1 + 3 + ..... + 149 + 151 + 153?

Imagine starting with one yellow cube and covering it all over with a single layer of red cubes, and then covering that cube with a layer of blue cubes. How many red and blue cubes would you need?

Triangular numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

Draw a square. A second square of the same size slides around the first always maintaining contact and keeping the same orientation. How far does the dot travel?

Can you describe this route to infinity? Where will the arrows take you next?

How many moves does it take to swap over some red and blue frogs? Do you have a method?

To avoid losing think of another very well known game where the patterns of play are similar.

An article for teachers and pupils that encourages you to look at the mathematical properties of similar games.

A game for 2 players with similarities to NIM. Place one counter on each spot on the games board. Players take it is turns to remove 1 or 2 adjacent counters. The winner picks up the last counter.

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.

Delight your friends with this cunning trick! Can you explain how it works?

The opposite vertices of a square have coordinates (a,b) and (c,d). What are the coordinates of the other vertices?

A game for 2 players. Set out 16 counters in rows of 1,3,5 and 7. Players take turns to remove any number of counters from a row. The player left with the last counter looses.

Imagine an infinitely large sheet of square dotty paper on which you can draw triangles of any size you wish (providing each vertex is on a dot). What areas is it/is it not possible to draw?

Can you explain the strategy for winning this game with any target?

Can you work out how to win this game of Nim? Does it matter if you go first or second?

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

This task encourages you to investigate the number of edging pieces and panes in different sized windows.

With one cut a piece of card 16 cm by 9 cm can be made into two pieces which can be rearranged to form a square 12 cm by 12 cm. Explain how this can be done.

It starts quite simple but great opportunities for number discoveries and patterns!

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

Find some examples of pairs of numbers such that their sum is a factor of their product. eg. 4 + 12 = 16 and 4 × 12 = 48 and 16 is a factor of 48.

The sum of the numbers 4 and 1 [1/3] is the same as the product of 4 and 1 [1/3]; that is to say 4 + 1 [1/3] = 4 × 1 [1/3]. What other numbers have the sum equal to the product and can this be so for. . . .

Consider all two digit numbers (10, 11, . . . ,99). In writing down all these numbers, which digits occur least often, and which occur most often ? What about three digit numbers, four digit numbers. . . .

What are the areas of these triangles? What do you notice? Can you generalise to other "families" of triangles?

Can you find sets of sloping lines that enclose a square?

Explore the effect of reflecting in two intersecting mirror lines.

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

Got It game for an adult and child. How can you play so that you know you will always win?

Nim-7 game for an adult and child. Who will be the one to take the last counter?

Charlie has made a Magic V. Can you use his example to make some more? And how about Magic Ls, Ns and Ws?

Spotting patterns can be an important first step - explaining why it is appropriate to generalise is the next step, and often the most interesting and important.

Imagine a large cube made from small red cubes being dropped into a pot of yellow paint. How many of the small cubes will have yellow paint on their faces?

Jo made a cube from some smaller cubes, painted some of the faces of the large cube, and then took it apart again. 45 small cubes had no paint on them at all. How many small cubes did Jo use?

Can you find an efficient method to work out how many handshakes there would be if hundreds of people met?

Use the animation to help you work out how many lines are needed to draw mystic roses of different sizes.

The Egyptians expressed all fractions as the sum of different unit fractions. Here is a chance to explore how they could have written different fractions.

Can all unit fractions be written as the sum of two unit fractions?

Imagine you have a large supply of 3kg and 8kg weights. How many of each weight would you need for the average (mean) of the weights to be 6kg? What other averages could you have?

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?