Can you explain the surprising results Jo found when she calculated the difference between square numbers?

Jo has three numbers which she adds together in pairs. When she does this she has three different totals: 11, 17 and 22 What are the three numbers Jo had to start with?”

Start with any number of counters in any number of piles. 2 players take it in turns to remove any number of counters from a single pile. The loser is the player who takes the last counter.

What would you get if you continued this sequence of fraction sums? 1/2 + 2/1 = 2/3 + 3/2 = 3/4 + 4/3 =

An account of some magic squares and their properties and and how to construct them for yourself.

Take any two positive numbers. Calculate the arithmetic and geometric means. Repeat the calculations to generate a sequence of arithmetic means and geometric means. Make a note of what happens to the. . . .

Can you find a general rule for finding the areas of equilateral triangles drawn on an isometric grid?

A game for 2 players with similarities to NIM. Place one counter on each spot on the games board. Players take it is turns to remove 1 or 2 adjacent counters. The winner picks up the last counter.

Can you find the values at the vertices when you know the values on the edges?

Investigate sequences given by $a_n = \frac{1+a_{n-1}}{a_{n-2}}$ for different choices of the first two terms. Make a conjecture about the behaviour of these sequences. Can you prove your conjecture?

A game for 2 players. Set out 16 counters in rows of 1,3,5 and 7. Players take turns to remove any number of counters from a row. The player left with the last counter looses.

Choose four consecutive whole numbers. Multiply the first and last numbers together. Multiply the middle pair together. What do you notice?

An article for teachers and pupils that encourages you to look at the mathematical properties of similar games.

Make some loops out of regular hexagons. What rules can you discover?

Many numbers can be expressed as the difference of two perfect squares. What do you notice about the numbers you CANNOT make?

It would be nice to have a strategy for disentangling any tangled ropes...

The diagram illustrates the formula: 1 + 3 + 5 + ... + (2n - 1) = nÂ² Use the diagram to show that any odd number is the difference of two squares.

Is there a relationship between the coordinates of the endpoints of a line and the number of grid squares it crosses?

Can you see how to build a harmonic triangle? Can you work out the next two rows?

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

Some students have been working out the number of strands needed for different sizes of cable. Can you make sense of their solutions?

Sets of integers like 3, 4, 5 are called Pythagorean Triples, because they could be the lengths of the sides of a right-angled triangle. Can you find any more?

Can you find the values at the vertices when you know the values on the edges of these multiplication arithmagons?

What is the volume of the solid formed by rotating this right angled triangle about the hypotenuse?

How could Penny, Tom and Matthew work out how many chocolates there are in different sized boxes?

Can you find an efficient method to work out how many handshakes there would be if hundreds of people met?

Charlie likes tablecloths that use as many colours as possible, but insists that his tablecloths have some symmetry. Can you work out how many colours he needs for different tablecloth designs?

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

Polygons drawn on square dotty paper have dots on their perimeter (p) and often internal (i) ones as well. Find a relationship between p, i and the area of the polygons.

Use the animation to help you work out how many lines are needed to draw mystic roses of different sizes.

When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...

Imagine starting with one yellow cube and covering it all over with a single layer of red cubes, and then covering that cube with a layer of blue cubes. How many red and blue cubes would you need?

Consider all two digit numbers (10, 11, . . . ,99). In writing down all these numbers, which digits occur least often, and which occur most often ? What about three digit numbers, four digit numbers. . . .

The sum of the numbers 4 and 1 [1/3] is the same as the product of 4 and 1 [1/3]; that is to say 4 + 1 [1/3] = 4 × 1 [1/3]. What other numbers have the sum equal to the product and can this be so for. . . .

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

What are the areas of these triangles? What do you notice? Can you generalise to other "families" of triangles?

Imagine a large cube made from small red cubes being dropped into a pot of yellow paint. How many of the small cubes will have yellow paint on their faces?

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

Charlie has moved between countries and the average income of both has increased. How can this be so?

The triangle OMN has vertices on the axes with whole number co-ordinates. How many points with whole number coordinates are there on the hypotenuse MN?

We can show that (x + 1)² = x² + 2x + 1 by considering the area of an (x + 1) by (x + 1) square. Show in a similar way that (x + 2)² = x² + 4x + 4

Pick a square within a multiplication square and add the numbers on each diagonal. What do you notice?

I added together some of my neighbours' house numbers. Can you explain the patterns I noticed?

List any 3 numbers. It is always possible to find a subset of adjacent numbers that add up to a multiple of 3. Can you explain why and prove it?

Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.