Try entering different sets of numbers in the number pyramids. How does the total at the top change?
Can you work out how to win this game of Nim? Does it matter if you go first or second?
An article for teachers and pupils that encourages you to look at the mathematical properties of similar games.
Can you explain the strategy for winning this game with any target?
This task encourages you to investigate the number of edging pieces and panes in different sized windows.
The NRICH team are always looking for new ways to engage teachers and pupils in problem solving. Here we explain the thinking behind maths trails.
Pick a square within a multiplication square and add the numbers on each diagonal. What do you notice?
You can work out the number someone else is thinking of as follows. Ask a friend to think of any natural number less than 100. Then ask them to tell you the remainders when this number is divided by. . . .
Make some loops out of regular hexagons. What rules can you discover?
Pick the number of times a week that you eat chocolate. This number must be more than one but less than ten. Multiply this number by 2. Add 5 (for Sunday). Multiply by 50... Can you explain why it. . . .
A game for 2 players. Set out 16 counters in rows of 1,3,5 and 7. Players take turns to remove any number of counters from a row. The player left with the last counter looses.
Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?
Janine noticed, while studying some cube numbers, that if you take three consecutive whole numbers and multiply them together and then add the middle number of the three, you get the middle number. . . .
Can you find the values at the vertices when you know the values on the edges of these multiplication arithmagons?
This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.
Charlie has made a Magic V. Can you use his example to make some more? And how about Magic Ls, Ns and Ws?
A game for 2 players with similarities to NIM. Place one counter on each spot on the games board. Players take it is turns to remove 1 or 2 adjacent counters. The winner picks up the last counter.
Investigate sequences given by $a_n = \frac{1+a_{n-1}}{a_{n-2}}$ for different choices of the first two terms. Make a conjecture about the behaviour of these sequences. Can you prove your conjecture?
Jo has three numbers which she adds together in pairs. When she does this she has three different totals: 11, 17 and 22 What are the three numbers Jo had to start with?”
Got It game for an adult and child. How can you play so that you know you will always win?
Nim-7 game for an adult and child. Who will be the one to take the last counter?
Investigate the different ways that fifteen schools could have given money in a charity fundraiser.
A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.
Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.
I added together some of my neighbours' house numbers. Can you explain the patterns I noticed?
If you can copy a network without lifting your pen off the paper and without drawing any line twice, then it is traversable. Decide which of these diagrams are traversable.
Spotting patterns can be an important first step - explaining why it is appropriate to generalise is the next step, and often the most interesting and important.
Start with any number of counters in any number of piles. 2 players take it in turns to remove any number of counters from a single pile. The loser is the player who takes the last counter.
Imagine a large cube made from small red cubes being dropped into a pot of yellow paint. How many of the small cubes will have yellow paint on their faces?
Explore the area of families of parallelograms and triangles. Can you find rules to work out the areas?
Choose four consecutive whole numbers. Multiply the first and last numbers together. Multiply the middle pair together. What do you notice?
Square numbers can be represented as the sum of consecutive odd numbers. What is the sum of 1 + 3 + ..... + 149 + 151 + 153?
Triangular numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?
Find some examples of pairs of numbers such that their sum is a factor of their product. eg. 4 + 12 = 16 and 4 × 12 = 48 and 16 is a factor of 48.
The sum of the numbers 4 and 1 [1/3] is the same as the product of 4 and 1 [1/3]; that is to say 4 + 1 [1/3] = 4 � 1 [1/3]. What other numbers have the sum equal to the product and can this be so. . . .
Consider all two digit numbers (10, 11, . . . ,99). In writing down all these numbers, which digits occur least often, and which occur most often ? What about three digit numbers, four digit numbers. . . .
How many moves does it take to swap over some red and blue frogs? Do you have a method?
When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...
Can you figure out how sequences of beach huts are generated?
Charlie and Alison have been drawing patterns on coordinate grids. Can you picture where the patterns lead?
Can you describe this route to infinity? Where will the arrows take you next?
It starts quite simple but great opportunities for number discoveries and patterns!
Some students have been working out the number of strands needed for different sizes of cable. Can you make sense of their solutions?
Jo made a cube from some smaller cubes, painted some of the faces of the large cube, and then took it apart again. 45 small cubes had no paint on them at all. How many small cubes did Jo use?
How could Penny, Tom and Matthew work out how many chocolates there are in different sized boxes?
Can you find an efficient method to work out how many handshakes there would be if hundreds of people met?
Use the animation to help you work out how many lines are needed to draw mystic roses of different sizes.