The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

Can you explain the strategy for winning this game with any target?

Got It game for an adult and child. How can you play so that you know you will always win?

This task encourages you to investigate the number of edging pieces and panes in different sized windows.

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

Delight your friends with this cunning trick! Can you explain how it works?

Can you work out how to win this game of Nim? Does it matter if you go first or second?

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

We can show that (x + 1)² = x² + 2x + 1 by considering the area of an (x + 1) by (x + 1) square. Show in a similar way that (x + 2)² = x² + 4x + 4

You can work out the number someone else is thinking of as follows. Ask a friend to think of any natural number less than 100. Then ask them to tell you the remainders when this number is divided by. . . .

The NRICH team are always looking for new ways to engage teachers and pupils in problem solving. Here we explain the thinking behind maths trails.

Spotting patterns can be an important first step - explaining why it is appropriate to generalise is the next step, and often the most interesting and important.

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

An article for teachers and pupils that encourages you to look at the mathematical properties of similar games.

If you can copy a network without lifting your pen off the paper and without drawing any line twice, then it is traversable. Decide which of these diagrams are traversable.

The opposite vertices of a square have coordinates (a,b) and (c,d). What are the coordinates of the other vertices?

Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.

Square numbers can be represented as the sum of consecutive odd numbers. What is the sum of 1 + 3 + ..... + 149 + 151 + 153?

A game for 2 players with similarities to NIM. Place one counter on each spot on the games board. Players take it is turns to remove 1 or 2 adjacent counters. The winner picks up the last counter.

Triangular numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

The triangle OMN has vertices on the axes with whole number co-ordinates. How many points with whole number coordinates are there on the hypotenuse MN?

Four bags contain a large number of 1s, 3s, 5s and 7s. Pick any ten numbers from the bags above so that their total is 37.

A game for 2 players. Set out 16 counters in rows of 1,3,5 and 7. Players take turns to remove any number of counters from a row. The player left with the last counter looses.

Take a look at the multiplication square. The first eleven triangle numbers have been identified. Can you see a pattern? Does the pattern continue?

Can you find sets of sloping lines that enclose a square?

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

It starts quite simple but great opportunities for number discoveries and patterns!

Rectangles are considered different if they vary in size or have different locations. How many different rectangles can be drawn on a chessboard?

Nim-7 game for an adult and child. Who will be the one to take the last counter?

To avoid losing think of another very well known game where the patterns of play are similar.

When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...

Charlie has made a Magic V. Can you use his example to make some more? And how about Magic Ls, Ns and Ws?

Great Granddad is very proud of his telegram from the Queen congratulating him on his hundredth birthday and he has friends who are even older than he is... When was he born?

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

What would be the smallest number of moves needed to move a Knight from a chess set from one corner to the opposite corner of a 99 by 99 square board?

A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?

Can you find an efficient method to work out how many handshakes there would be if hundreds of people met?

How could Penny, Tom and Matthew work out how many chocolates there are in different sized boxes?

Can you describe this route to infinity? Where will the arrows take you next?

Start with any number of counters in any number of piles. 2 players take it in turns to remove any number of counters from a single pile. The loser is the player who takes the last counter.

The sum of the numbers 4 and 1 [1/3] is the same as the product of 4 and 1 [1/3]; that is to say 4 + 1 [1/3] = 4 × 1 [1/3]. What other numbers have the sum equal to the product and can this be so for. . . .

Consider all two digit numbers (10, 11, . . . ,99). In writing down all these numbers, which digits occur least often, and which occur most often ? What about three digit numbers, four digit numbers. . . .

Imagine we have four bags containing numbers from a sequence. What numbers can we make now?

How many moves does it take to swap over some red and blue frogs? Do you have a method?

Find some examples of pairs of numbers such that their sum is a factor of their product. eg. 4 + 12 = 16 and 4 × 12 = 48 and 16 is a factor of 48.

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

What are the areas of these triangles? What do you notice? Can you generalise to other "families" of triangles?