The triangle OMN has vertices on the axes with whole number co-ordinates. How many points with whole number coordinates are there on the hypotenuse MN?

The opposite vertices of a square have coordinates (a,b) and (c,d). What are the coordinates of the other vertices?

Can you describe this route to infinity? Where will the arrows take you next?

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

Some students have been working out the number of strands needed for different sizes of cable. Can you make sense of their solutions?

Rectangles are considered different if they vary in size or have different locations. How many different rectangles can be drawn on a chessboard?

Use the animation to help you work out how many lines are needed to draw mystic roses of different sizes.

Triangular numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

How could Penny, Tom and Matthew work out how many chocolates there are in different sized boxes?

Imagine a large cube made from small red cubes being dropped into a pot of yellow paint. How many of the small cubes will have yellow paint on their faces?

How many moves does it take to swap over some red and blue frogs? Do you have a method?

To avoid losing think of another very well known game where the patterns of play are similar.

Jo made a cube from some smaller cubes, painted some of the faces of the large cube, and then took it apart again. 45 small cubes had no paint on them at all. How many small cubes did Jo use?

A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?

Imagine starting with one yellow cube and covering it all over with a single layer of red cubes, and then covering that cube with a layer of blue cubes. How many red and blue cubes would you need?

What would be the smallest number of moves needed to move a Knight from a chess set from one corner to the opposite corner of a 99 by 99 square board?

Square numbers can be represented as the sum of consecutive odd numbers. What is the sum of 1 + 3 + ..... + 149 + 151 + 153?

What is the total number of squares that can be made on a 5 by 5 geoboard?

Can you find a general rule for finding the areas of equilateral triangles drawn on an isometric grid?

Choose a couple of the sequences. Try to picture how to make the next, and the next, and the next... Can you describe your reasoning?

What's the largest volume of box you can make from a square of paper?

Pick a square within a multiplication square and add the numbers on each diagonal. What do you notice?

When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...

Is there a relationship between the coordinates of the endpoints of a line and the number of grid squares it crosses?

Spotting patterns can be an important first step - explaining why it is appropriate to generalise is the next step, and often the most interesting and important.

If you can copy a network without lifting your pen off the paper and without drawing any line twice, then it is traversable. Decide which of these diagrams are traversable.

Imagine an infinitely large sheet of square dotty paper on which you can draw triangles of any size you wish (providing each vertex is on a dot). What areas is it/is it not possible to draw?

Can you dissect a square into: 4, 7, 10, 13... other squares? 6, 9, 12, 15... other squares? 8, 11, 14... other squares?

With one cut a piece of card 16 cm by 9 cm can be made into two pieces which can be rearranged to form a square 12 cm by 12 cm. Explain how this can be done.

Build gnomons that are related to the Fibonacci sequence and try to explain why this is possible.

Triangle ABC is an equilateral triangle with three parallel lines going through the vertices. Calculate the length of the sides of the triangle if the perpendicular distances between the parallel. . . .

It's easy to work out the areas of most squares that we meet, but what if they were tilted?

Polygons drawn on square dotty paper have dots on their perimeter (p) and often internal (i) ones as well. Find a relationship between p, i and the area of the polygons.

If you continue the pattern, can you predict what each of the following areas will be? Try to explain your prediction.

Take any two positive numbers. Calculate the arithmetic and geometric means. Repeat the calculations to generate a sequence of arithmetic means and geometric means. Make a note of what happens to the. . . .

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

Find some examples of pairs of numbers such that their sum is a factor of their product. eg. 4 + 12 = 16 and 4 × 12 = 48 and 16 is a factor of 48.

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

Start with any number of counters in any number of piles. 2 players take it in turns to remove any number of counters from a single pile. The loser is the player who takes the last counter.

Choose four consecutive whole numbers. Multiply the first and last numbers together. Multiply the middle pair together. What do you notice?

What are the areas of these triangles? What do you notice? Can you generalise to other "families" of triangles?

We can show that (x + 1)² = x² + 2x + 1 by considering the area of an (x + 1) by (x + 1) square. Show in a similar way that (x + 2)² = x² + 4x + 4

Jo has three numbers which she adds together in pairs. When she does this she has three different totals: 11, 17 and 22 What are the three numbers Jo had to start with?”

Charlie likes tablecloths that use as many colours as possible, but insists that his tablecloths have some symmetry. Can you work out how many colours he needs for different tablecloth designs?

An article for teachers and pupils that encourages you to look at the mathematical properties of similar games.

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.