Explore the effect of reflecting in two parallel mirror lines.

Explore the effect of reflecting in two intersecting mirror lines.

Explore the effect of combining enlargements.

A red square and a blue square overlap so that the corner of the red square rests on the centre of the blue square. Show that, whatever the orientation of the red square, it covers a quarter of the. . . .

Charlie likes tablecloths that use as many colours as possible, but insists that his tablecloths have some symmetry. Can you work out how many colours he needs for different tablecloth designs?

Draw a square. A second square of the same size slides around the first always maintaining contact and keeping the same orientation. How far does the dot travel?

Can you show that you can share a square pizza equally between two people by cutting it four times using vertical, horizontal and diagonal cuts through any point inside the square?

What would be the smallest number of moves needed to move a Knight from a chess set from one corner to the opposite corner of a 99 by 99 square board?

Can you dissect a square into: 4, 7, 10, 13... other squares? 6, 9, 12, 15... other squares? 8, 11, 14... other squares?

What is the volume of the solid formed by rotating this right angled triangle about the hypotenuse?

With one cut a piece of card 16 cm by 9 cm can be made into two pieces which can be rearranged to form a square 12 cm by 12 cm. Explain how this can be done.

Show that for any triangle it is always possible to construct 3 touching circles with centres at the vertices. Is it possible to construct touching circles centred at the vertices of any polygon?

The Egyptians expressed all fractions as the sum of different unit fractions. Here is a chance to explore how they could have written different fractions.

An article for teachers and pupils that encourages you to look at the mathematical properties of similar games.

If you can copy a network without lifting your pen off the paper and without drawing any line twice, then it is traversable. Decide which of these diagrams are traversable.

Spotting patterns can be an important first step - explaining why it is appropriate to generalise is the next step, and often the most interesting and important.

How many moves does it take to swap over some red and blue frogs? Do you have a method?

Imagine a large cube made from small red cubes being dropped into a pot of yellow paint. How many of the small cubes will have yellow paint on their faces?

What are the areas of these triangles? What do you notice? Can you generalise to other "families" of triangles?

Choose four consecutive whole numbers. Multiply the first and last numbers together. Multiply the middle pair together. What do you notice?

Square numbers can be represented as the sum of consecutive odd numbers. What is the sum of 1 + 3 + ..... + 149 + 151 + 153?

Find some examples of pairs of numbers such that their sum is a factor of their product. eg. 4 + 12 = 16 and 4 × 12 = 48 and 16 is a factor of 48.

Triangular numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

The sum of the numbers 4 and 1 [1/3] is the same as the product of 4 and 1 [1/3]; that is to say 4 + 1 [1/3] = 4 × 1 [1/3]. What other numbers have the sum equal to the product and can this be so for. . . .

Can you find the values at the vertices when you know the values on the edges of these multiplication arithmagons?

What would you get if you continued this sequence of fraction sums? 1/2 + 2/1 = 2/3 + 3/2 = 3/4 + 4/3 =

Triangle ABC is an equilateral triangle with three parallel lines going through the vertices. Calculate the length of the sides of the triangle if the perpendicular distances between the parallel. . . .

Take any two positive numbers. Calculate the arithmetic and geometric means. Repeat the calculations to generate a sequence of arithmetic means and geometric means. Make a note of what happens to the. . . .

Can you find sets of sloping lines that enclose a square?

A country has decided to have just two different coins, 3z and 5z coins. Which totals can be made? Is there a largest total that cannot be made? How do you know?

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.

Pick a square within a multiplication square and add the numbers on each diagonal. What do you notice?

Can all unit fractions be written as the sum of two unit fractions?

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

What's the largest volume of box you can make from a square of paper?

How could Penny, Tom and Matthew work out how many chocolates there are in different sized boxes?

If you have a large supply of 3kg and 8kg weights, how many of each would you need for the average (mean) of the weights to be 6kg?

Can you see how to build a harmonic triangle? Can you work out the next two rows?

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

Charlie has moved between countries and the average income of both has increased. How can this be so?

We can show that (x + 1)² = x² + 2x + 1 by considering the area of an (x + 1) by (x + 1) square. Show in a similar way that (x + 2)² = x² + 4x + 4

Imagine starting with one yellow cube and covering it all over with a single layer of red cubes, and then covering that cube with a layer of blue cubes. How many red and blue cubes would you need?

When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...

Can you find the values at the vertices when you know the values on the edges?

It would be nice to have a strategy for disentangling any tangled ropes...