What is the ratio of the area of a square inscribed in a semicircle to the area of the square inscribed in the entire circle?

ABC and DEF are equilateral triangles of side 3 and 4 respectively. Construct an equilateral triangle whose area is the sum of the area of ABC and DEF.

What is the volume of the solid formed by rotating this right angled triangle about the hypotenuse?

If you continue the pattern, can you predict what each of the following areas will be? Try to explain your prediction.

With one cut a piece of card 16 cm by 9 cm can be made into two pieces which can be rearranged to form a square 12 cm by 12 cm. Explain how this can be done.

Sets of integers like 3, 4, 5 are called Pythagorean Triples, because they could be the lengths of the sides of a right-angled triangle. Can you find any more?

Triangle ABC is an equilateral triangle with three parallel lines going through the vertices. Calculate the length of the sides of the triangle if the perpendicular distances between the parallel. . . .

Can you show that you can share a square pizza equally between two people by cutting it four times using vertical, horizontal and diagonal cuts through any point inside the square?

Polygons drawn on square dotty paper have dots on their perimeter (p) and often internal (i) ones as well. Find a relationship between p, i and the area of the polygons.

Imagine an infinitely large sheet of square dotty paper on which you can draw triangles of any size you wish (providing each vertex is on a dot). What areas is it/is it not possible to draw?

Spotting patterns can be an important first step - explaining why it is appropriate to generalise is the next step, and often the most interesting and important.

What are the areas of these triangles? What do you notice? Can you generalise to other "families" of triangles?

Can you find the area of a parallelogram defined by two vectors?

Take any two positive numbers. Calculate the arithmetic and geometric means. Repeat the calculations to generate a sequence of arithmetic means and geometric means. Make a note of what happens to the. . . .

It's easy to work out the areas of most squares that we meet, but what if they were tilted?

Can you find a general rule for finding the areas of equilateral triangles drawn on an isometric grid?

First of all, pick the number of times a week that you would like to eat chocolate. Multiply this number by 2...

Imagine starting with one yellow cube and covering it all over with a single layer of red cubes, and then covering that cube with a layer of blue cubes. How many red and blue cubes would you need?

Charlie has moved between countries and the average income of both has increased. How can this be so?

Show that for any triangle it is always possible to construct 3 touching circles with centres at the vertices. Is it possible to construct touching circles centred at the vertices of any polygon?

Some students have been working out the number of strands needed for different sizes of cable. Can you make sense of their solutions?

How could Penny, Tom and Matthew work out how many chocolates there are in different sized boxes?

Can all unit fractions be written as the sum of two unit fractions?

Charlie has made a Magic V. Can you use his example to make some more? And how about Magic Ls, Ns and Ws?

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

An article for teachers and pupils that encourages you to look at the mathematical properties of similar games.

Can you find the values at the vertices when you know the values on the edges of these multiplication arithmagons?

If you can copy a network without lifting your pen off the paper and without drawing any line twice, then it is traversable. Decide which of these diagrams are traversable.

It starts quite simple but great opportunities for number discoveries and patterns!

How many moves does it take to swap over some red and blue frogs? Do you have a method?

Imagine a large cube made from small red cubes being dropped into a pot of yellow paint. How many of the small cubes will have yellow paint on their faces?

Can you describe this route to infinity? Where will the arrows take you next?

Imagine we have four bags containing numbers from a sequence. What numbers can we make now?

Choose four consecutive whole numbers. Multiply the first and last numbers together. Multiply the middle pair together. What do you notice?

Square numbers can be represented as the sum of consecutive odd numbers. What is the sum of 1 + 3 + ..... + 149 + 151 + 153?

Got It game for an adult and child. How can you play so that you know you will always win?

Nim-7 game for an adult and child. Who will be the one to take the last counter?

Triangular numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

Start with any number of counters in any number of piles. 2 players take it in turns to remove any number of counters from a single pile. The loser is the player who takes the last counter.

Caroline and James pick sets of five numbers. Charlie chooses three of them that add together to make a multiple of three. Can they stop him?

Jo has three numbers which she adds together in pairs. When she does this she has three different totals: 11, 17 and 22 What are the three numbers Jo had to start with?”

Use the animation to help you work out how many lines are needed to draw mystic roses of different sizes.

What's the largest volume of box you can make from a square of paper?

How many pairs of numbers can you find that add up to a multiple of 11? Do you notice anything interesting about your results?

If you have a large supply of 3kg and 8kg weights, how many of each would you need for the average (mean) of the weights to be 6kg?