Choose four consecutive whole numbers. Multiply the first and last numbers together. Multiply the middle pair together. What do you notice?

Janine noticed, while studying some cube numbers, that if you take three consecutive whole numbers and multiply them together and then add the middle number of the three, you get the middle number. . . .

Jo has three numbers which she adds together in pairs. When she does this she has three different totals: 11, 17 and 22 What are the three numbers Jo had to start with?”

Pick a square within a multiplication square and add the numbers on each diagonal. What do you notice?

Some students have been working out the number of strands needed for different sizes of cable. Can you make sense of their solutions?

Many numbers can be expressed as the difference of two perfect squares. What do you notice about the numbers you CANNOT make?

What would you get if you continued this sequence of fraction sums? 1/2 + 2/1 = 2/3 + 3/2 = 3/4 + 4/3 =

Imagine a large cube made from small red cubes being dropped into a pot of yellow paint. How many of the small cubes will have yellow paint on their faces?

What is the total number of squares that can be made on a 5 by 5 geoboard?

Can you find the values at the vertices when you know the values on the edges?

Can you show that you can share a square pizza equally between two people by cutting it four times using vertical, horizontal and diagonal cuts through any point inside the square?

The diagram illustrates the formula: 1 + 3 + 5 + ... + (2n - 1) = n² Use the diagram to show that any odd number is the difference of two squares.

Can you find the values at the vertices when you know the values on the edges of these multiplication arithmagons?

Jo made a cube from some smaller cubes, painted some of the faces of the large cube, and then took it apart again. 45 small cubes had no paint on them at all. How many small cubes did Jo use?

Spotting patterns can be an important first step - explaining why it is appropriate to generalise is the next step, and often the most interesting and important.

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.

Charlie likes tablecloths that use as many colours as possible, but insists that his tablecloths have some symmetry. Can you work out how many colours he needs for different tablecloth designs?

A game for 2 players. Set out 16 counters in rows of 1,3,5 and 7. Players take turns to remove any number of counters from a row. The player left with the last counter looses.

We can show that (x + 1)² = x² + 2x + 1 by considering the area of an (x + 1) by (x + 1) square. Show in a similar way that (x + 2)² = x² + 4x + 4

Imagine an infinitely large sheet of square dotty paper on which you can draw triangles of any size you wish (providing each vertex is on a dot). What areas is it/is it not possible to draw?

The triangle OMN has vertices on the axes with whole number co-ordinates. How many points with whole number coordinates are there on the hypotenuse MN?

Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

Can you see how to build a harmonic triangle? Can you work out the next two rows?

Imagine starting with one yellow cube and covering it all over with a single layer of red cubes, and then covering that cube with a layer of blue cubes. How many red and blue cubes would you need?

When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...

Rectangles are considered different if they vary in size or have different locations. How many different rectangles can be drawn on a chessboard?

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

Polygons drawn on square dotty paper have dots on their perimeter (p) and often internal (i) ones as well. Find a relationship between p, i and the area of the polygons.

How many moves does it take to swap over some red and blue frogs? Do you have a method?

It would be nice to have a strategy for disentangling any tangled ropes...

Make some loops out of regular hexagons. What rules can you discover?

Find some examples of pairs of numbers such that their sum is a factor of their product. eg. 4 + 12 = 16 and 4 × 12 = 48 and 16 is a factor of 48.

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

An article for teachers and pupils that encourages you to look at the mathematical properties of similar games.

Triangular numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

Square numbers can be represented as the sum of consecutive odd numbers. What is the sum of 1 + 3 + ..... + 149 + 151 + 153?

If you can copy a network without lifting your pen off the paper and without drawing any line twice, then it is traversable. Decide which of these diagrams are traversable.

Triangle ABC is an equilateral triangle with three parallel lines going through the vertices. Calculate the length of the sides of the triangle if the perpendicular distances between the parallel. . . .

I added together some of my neighbours' house numbers. Can you explain the patterns I noticed?

How could Penny, Tom and Matthew work out how many chocolates there are in different sized boxes?

It starts quite simple but great opportunities for number discoveries and patterns!

You can work out the number someone else is thinking of as follows. Ask a friend to think of any natural number less than 100. Then ask them to tell you the remainders when this number is divided by. . . .

Can you describe this route to infinity? Where will the arrows take you next?

In how many ways can you arrange three dice side by side on a surface so that the sum of the numbers on each of the four faces (top, bottom, front and back) is equal?

This task encourages you to investigate the number of edging pieces and panes in different sized windows.