Show that for any triangle it is always possible to construct 3 touching circles with centres at the vertices. Is it possible to construct touching circles centred at the vertices of any polygon?
ABC and DEF are equilateral triangles of side 3 and 4 respectively. Construct an equilateral triangle whose area is the sum of the area of ABC and DEF.
With one cut a piece of card 16 cm by 9 cm can be made into two pieces which can be rearranged to form a square 12 cm by 12 cm. Explain how this can be done.
Triangle ABC is an equilateral triangle with three parallel lines going through the vertices. Calculate the length of the sides of the triangle if the perpendicular distances between the parallel. . . .
If you continue the pattern, can you predict what each of the following areas will be? Try to explain your prediction.
It's easy to work out the areas of most squares that we meet, but what if they were tilted?
Can you find the values at the vertices when you know the values on the edges of these multiplication arithmagons?
What is the ratio of the area of a square inscribed in a semicircle to the area of the square inscribed in the entire circle?
Alf Coles writes about how he tries to create 'spaces for exploration' for the students in his classrooms.
What is the volume of the solid formed by rotating this right angled triangle about the hypotenuse?
We can show that (x + 1)² = x² + 2x + 1 by considering the area of an (x + 1) by (x + 1) square. Show in a similar way that (x + 2)² = x² + 4x + 4
Pick a square within a multiplication square and add the numbers on each diagonal. What do you notice?
Make some loops out of regular hexagons. What rules can you discover?
Many numbers can be expressed as the difference of two perfect squares. What do you notice about the numbers you CANNOT make?
Imagine starting with one yellow cube and covering it all over with a single layer of red cubes, and then covering that cube with a layer of blue cubes. How many red and blue cubes would you need?
When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...
Can you find the values at the vertices when you know the values on the edges?
It would be nice to have a strategy for disentangling any tangled ropes...
Charlie and Alison have been drawing patterns on coordinate grids. Can you picture where the patterns lead?
Four bags contain a large number of 1s, 3s, 5s and 7s. Pick any ten numbers from the bags above so that their total is 37.
Charlie likes tablecloths that use as many colours as possible, but insists that his tablecloths have some symmetry. Can you work out how many colours he needs for different tablecloth designs?
Explore the area of families of parallelograms and triangles. Can you find rules to work out the areas?
Imagine an infinitely large sheet of square dotty paper on which you can draw triangles of any size you wish (providing each vertex is on a dot). What areas is it/is it not possible to draw?
Rectangles are considered different if they vary in size or have different locations. How many different rectangles can be drawn on a chessboard?
A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.
Can you find sets of sloping lines that enclose a square?
Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.
Take any two positive numbers. Calculate the arithmetic and geometric means. Repeat the calculations to generate a sequence of arithmetic means and geometric means. Make a note of what happens to the. . . .
Try entering different sets of numbers in the number pyramids. How does the total at the top change?
Spotting patterns can be an important first step - explaining why it is appropriate to generalise is the next step, and often the most interesting and important.
This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.
Triangular numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?
Can you find a general rule for finding the areas of equilateral triangles drawn on an isometric grid?
Investigate sequences given by $a_n = \frac{1+a_{n-1}}{a_{n-2}}$ for different choices of the first two terms. Make a conjecture about the behaviour of these sequences. Can you prove your conjecture?
Choose four consecutive whole numbers. Multiply the first and last numbers together. Multiply the middle pair together. What do you notice?
Can you figure out how sequences of beach huts are generated?
Some students have been working out the number of strands needed for different sizes of cable. Can you make sense of their solutions?
Sets of integers like 3, 4, 5 are called Pythagorean Triples, because they could be the lengths of the sides of a right-angled triangle. Can you find any more?
Is there a relationship between the coordinates of the endpoints of a line and the number of grid squares it crosses?
Draw a square. A second square of the same size slides around the first always maintaining contact and keeping the same orientation. How far does the dot travel?
Jo made a cube from some smaller cubes, painted some of the faces of the large cube, and then took it apart again. 45 small cubes had no paint on them at all. How many small cubes did Jo use?
How could Penny, Tom and Matthew work out how many chocolates there are in different sized boxes?
Can you find an efficient method to work out how many handshakes there would be if hundreds of people met?
Use the animation to help you work out how many lines are needed to draw mystic roses of different sizes.
A counter is placed in the bottom right hand corner of a grid. You toss a coin and move the star according to the following rules: ... What is the probability that you end up in the top left-hand. . . .
A red square and a blue square overlap so that the corner of the red square rests on the centre of the blue square. Show that, whatever the orientation of the red square, it covers a quarter of the. . . .
The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?
This task encourages you to investigate the number of edging pieces and panes in different sized windows.
To avoid losing think of another very well known game where the patterns of play are similar.