If you have a large supply of 3kg and 8kg weights, how many of each would you need for the average (mean) of the weights to be 6kg?
Charlie has moved between countries and the average income of both has increased. How can this be so?
Start with two numbers and generate a sequence where the next number is the mean of the last two numbers...
Can you find the values at the vertices when you know the values on the edges?
A country has decided to have just two different coins, 3z and 5z coins. Which totals can be made? Is there a largest total that cannot be made? How do you know?
Charlie and Abi put a counter on 42. They wondered if they could visit all the other numbers on their 1-100 board, moving the counter using just these two operations: x2 and -5. What do you think?
What's the largest volume of box you can make from a square of paper?
A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.
Start with any number of counters in any number of piles. 2 players take it in turns to remove any number of counters from a single pile. The loser is the player who takes the last counter.
Choose a couple of the sequences. Try to picture how to make the next, and the next, and the next... Can you describe your reasoning?
Jo has three numbers which she adds together in pairs. When she does this she has three different totals: 11, 17 and 22 What are the three numbers Jo had to start with?”
Caroline and James pick sets of five numbers. Charlie chooses three of them that add together to make a multiple of three. Can they stop him?
It's easy to work out the areas of most squares that we meet, but what if they were tilted?
It would be nice to have a strategy for disentangling any tangled ropes...
What is the ratio of the area of a square inscribed in a semicircle to the area of the square inscribed in the entire circle?
When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...
Try entering different sets of numbers in the number pyramids. How does the total at the top change?
An article for teachers and pupils that encourages you to look at the mathematical properties of similar games.
If you can copy a network without lifting your pen off the paper and without drawing any line twice, then it is traversable. Decide which of these diagrams are traversable.
Spotting patterns can be an important first step - explaining why it is appropriate to generalise is the next step, and often the most interesting and important.
How many moves does it take to swap over some red and blue frogs? Do you have a method?
Imagine a large cube made from small red cubes being dropped into a pot of yellow paint. How many of the small cubes will have yellow paint on their faces?
Explore the area of families of parallelograms and triangles. Can you find rules to work out the areas?
Choose four consecutive whole numbers. Multiply the first and last numbers together. Multiply the middle pair together. What do you notice?
Square numbers can be represented as the sum of consecutive odd numbers. What is the sum of 1 + 3 + ..... + 149 + 151 + 153?
Triangular numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?
This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.
Find some examples of pairs of numbers such that their sum is a factor of their product. eg. 4 + 12 = 16 and 4 × 12 = 48 and 16 is a factor of 48.
The sum of the numbers 4 and 1 [1/3] is the same as the product of 4 and 1 [1/3]; that is to say 4 + 1 [1/3] = 4 � 1 [1/3]. What other numbers have the sum equal to the product and can this be so. . . .
Consider all two digit numbers (10, 11, . . . ,99). In writing down all these numbers, which digits occur least often, and which occur most often ? What about three digit numbers, four digit numbers. . . .
Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.
We can show that (x + 1)² = x² + 2x + 1 by considering the area of an (x + 1) by (x + 1) square. Show in a similar way that (x + 2)² = x² + 4x + 4
Imagine starting with one yellow cube and covering it all over with a single layer of red cubes, and then covering that cube with a layer of blue cubes. How many red and blue cubes would you need?
Imagine we have four bags containing a large number of 1s, 4s, 7s and 10s. What numbers can we make?
Investigate the different ways that fifteen schools could have given money in a charity fundraiser.
Is there an efficient way to work out how many factors a large number has?
Nim-7 game for an adult and child. Who will be the one to take the last counter?
Got It game for an adult and child. How can you play so that you know you will always win?
Charlie and Alison have been drawing patterns on coordinate grids. Can you picture where the patterns lead?
Imagine we have four bags containing numbers from a sequence. What numbers can we make now?
Can you describe this route to infinity? Where will the arrows take you next?
It starts quite simple but great opportunities for number discoveries and patterns!
Charlie has made a Magic V. Can you use his example to make some more? And how about Magic Ls, Ns and Ws?
Some students have been working out the number of strands needed for different sizes of cable. Can you make sense of their solutions?
Sets of integers like 3, 4, 5 are called Pythagorean Triples, because they could be the lengths of the sides of a right-angled triangle. Can you find any more?
Can you find the values at the vertices when you know the values on the edges of these multiplication arithmagons?
Jo made a cube from some smaller cubes, painted some of the faces of the large cube, and then took it apart again. 45 small cubes had no paint on them at all. How many small cubes did Jo use?