Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.

Can you find the values at the vertices when you know the values on the edges of these multiplication arithmagons?

Can you find an efficient method to work out how many handshakes there would be if hundreds of people met?

Take any two positive numbers. Calculate the arithmetic and geometric means. Repeat the calculations to generate a sequence of arithmetic means and geometric means. Make a note of what happens to the. . . .

I added together some of my neighbours' house numbers. Can you explain the patterns I noticed?

Choose four consecutive whole numbers. Multiply the first and last numbers together. Multiply the middle pair together. What do you notice?

Square numbers can be represented as the sum of consecutive odd numbers. What is the sum of 1 + 3 + ..... + 149 + 151 + 153?

Triangular numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

Rectangles are considered different if they vary in size or have different locations. How many different rectangles can be drawn on a chessboard?

A game for 2 players. Set out 16 counters in rows of 1,3,5 and 7. Players take turns to remove any number of counters from a row. The player left with the last counter looses.

Dave Hewitt suggests that there might be more to mathematics than looking at numerical results, finding patterns and generalising.

Four bags contain a large number of 1s, 3s, 5s and 7s. Pick any ten numbers from the bags above so that their total is 37.

An article for teachers and pupils that encourages you to look at the mathematical properties of similar games.

The triangle OMN has vertices on the axes with whole number co-ordinates. How many points with whole number coordinates are there on the hypotenuse MN?

Charlie and Abi put a counter on 42. They wondered if they could visit all the other numbers on their 1-100 board, moving the counter using just these two operations: x2 and -5. What do you think?

The Tower of Hanoi is an ancient mathematical challenge. Working on the building blocks may help you to explain the patterns you notice.

Many numbers can be expressed as the difference of two perfect squares. What do you notice about the numbers you CANNOT make?

Make some loops out of regular hexagons. What rules can you discover?

Spotting patterns can be an important first step - explaining why it is appropriate to generalise is the next step, and often the most interesting and important.

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

Nim-7 game for an adult and child. Who will be the one to take the last counter?

Got It game for an adult and child. How can you play so that you know you will always win?

It starts quite simple but great opportunities for number discoveries and patterns!

Can you figure out how sequences of beach huts are generated?

The Egyptians expressed all fractions as the sum of different unit fractions. Here is a chance to explore how they could have written different fractions.

Can all unit fractions be written as the sum of two unit fractions?

We can show that (x + 1)² = x² + 2x + 1 by considering the area of an (x + 1) by (x + 1) square. Show in a similar way that (x + 2)² = x² + 4x + 4

Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.

Pick a square within a multiplication square and add the numbers on each diagonal. What do you notice?

Can you find the values at the vertices when you know the values on the edges?

Start with any number of counters in any number of piles. 2 players take it in turns to remove any number of counters from a single pile. The loser is the player who takes the last counter.

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

Can you find a general rule for finding the areas of equilateral triangles drawn on an isometric grid?

Investigate sequences given by $a_n = \frac{1+a_{n-1}}{a_{n-2}}$ for different choices of the first two terms. Make a conjecture about the behaviour of these sequences. Can you prove your conjecture?

Can you find sets of sloping lines that enclose a square?

A counter is placed in the bottom right hand corner of a grid. You toss a coin and move the star according to the following rules: ... What is the probability that you end up in the top left-hand. . . .

A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?

These gnomons appear to have more than a passing connection with the Fibonacci sequence. This problem ask you to investigate some of these connections.

This task encourages you to investigate the number of edging pieces and panes in different sized windows.

Can you work out how to win this game of Nim? Does it matter if you go first or second?

To avoid losing think of another very well known game where the patterns of play are similar.

Can you explain the strategy for winning this game with any target?

An account of some magic squares and their properties and and how to construct them for yourself.