How many centimetres of rope will I need to make another mat just like the one I have here?

What can you say about these shapes? This problem challenges you to create shapes with different areas and perimeters.

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

In each of the pictures the invitation is for you to: Count what you see. Identify how you think the pattern would continue.

Use the interactivity to investigate what kinds of triangles can be drawn on peg boards with different numbers of pegs.

While we were sorting some papers we found 3 strange sheets which seemed to come from small books but there were page numbers at the foot of each page. Did the pages come from the same book?

This challenge, written for the Young Mathematicians' Award, invites you to explore 'centred squares'.

An investigation that gives you the opportunity to make and justify predictions.

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

Sweets are given out to party-goers in a particular way. Investigate the total number of sweets received by people sitting in different positions.

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

How can you arrange these 10 matches in four piles so that when you move one match from three of the piles into the fourth, you end up with the same arrangement?

Polygonal numbers are those that are arranged in shapes as they enlarge. Explore the polygonal numbers drawn here.

It starts quite simple but great opportunities for number discoveries and patterns!

Can you describe this route to infinity? Where will the arrows take you next?

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

These squares have been made from Cuisenaire rods. Can you describe the pattern? What would the next square look like?

Can you find all the ways to get 15 at the top of this triangle of numbers? Many opportunities to work in different ways.

Draw a square. A second square of the same size slides around the first always maintaining contact and keeping the same orientation. How far does the dot travel?

Are these statements always true, sometimes true or never true?

A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?

Can you dissect an equilateral triangle into 6 smaller ones? What number of smaller equilateral triangles is it NOT possible to dissect a larger equilateral triangle into?

What would be the smallest number of moves needed to move a Knight from a chess set from one corner to the opposite corner of a 99 by 99 square board?

This task follows on from Build it Up and takes the ideas into three dimensions!

We can show that (x + 1)² = x² + 2x + 1 by considering the area of an (x + 1) by (x + 1) square. Show in a similar way that (x + 2)² = x² + 4x + 4

Imagine starting with one yellow cube and covering it all over with a single layer of red cubes, and then covering that cube with a layer of blue cubes. How many red and blue cubes would you need?

Take a look at the video of this trick. Can you perform it yourself? Why is this maths and not magic?

When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...

Watch this animation. What do you see? Can you explain why this happens?

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

This challenge encourages you to explore dividing a three-digit number by a single-digit number.

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.

We can arrange dots in a similar way to the 5 on a dice and they usually sit quite well into a rectangular shape. How many altogether in this 3 by 5? What happens for other sizes?

An article for teachers and pupils that encourages you to look at the mathematical properties of similar games.

If you can copy a network without lifting your pen off the paper and without drawing any line twice, then it is traversable. Decide which of these diagrams are traversable.

Spotting patterns can be an important first step - explaining why it is appropriate to generalise is the next step, and often the most interesting and important.

How many moves does it take to swap over some red and blue frogs? Do you have a method?

It's easy to work out the areas of most squares that we meet, but what if they were tilted?

Here are two kinds of spirals for you to explore. What do you notice?

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

Tom and Ben visited Numberland. Use the maps to work out the number of points each of their routes scores.

Use two dice to generate two numbers with one decimal place. What happens when you round these numbers to the nearest whole number?

What happens when you round these three-digit numbers to the nearest 100?

What happens when you round these numbers to the nearest whole number?

In this game for two players, the idea is to take it in turns to choose 1, 3, 5 or 7. The winner is the first to make the total 37.

Nim-7 game for an adult and child. Who will be the one to take the last counter?

Strike it Out game for an adult and child. Can you stop your partner from being able to go?