With one cut a piece of card 16 cm by 9 cm can be made into two pieces which can be rearranged to form a square 12 cm by 12 cm. Explain how this can be done.

If you can copy a network without lifting your pen off the paper and without drawing any line twice, then it is traversable. Decide which of these diagrams are traversable.

Draw a square. A second square of the same size slides around the first always maintaining contact and keeping the same orientation. How far does the dot travel?

It's easy to work out the areas of most squares that we meet, but what if they were tilted?

How could Penny, Tom and Matthew work out how many chocolates there are in different sized boxes?

Can you describe this route to infinity? Where will the arrows take you next?

It starts quite simple but great opportunities for number discoveries and patterns!

Imagine starting with one yellow cube and covering it all over with a single layer of red cubes, and then covering that cube with a layer of blue cubes. How many red and blue cubes would you need?

What would be the smallest number of moves needed to move a Knight from a chess set from one corner to the opposite corner of a 99 by 99 square board?

A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?

Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.

Triangular numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

How many moves does it take to swap over some red and blue frogs? Do you have a method?

Here are some arrangements of circles. How many circles would I need to make the next size up for each? Can you create your own arrangement and investigate the number of circles it needs?

Square numbers can be represented as the sum of consecutive odd numbers. What is the sum of 1 + 3 + ..... + 149 + 151 + 153?

Rectangles are considered different if they vary in size or have different locations. How many different rectangles can be drawn on a chessboard?

Imagine an infinitely large sheet of square dotty paper on which you can draw triangles of any size you wish (providing each vertex is on a dot). What areas is it/is it not possible to draw?

Can you dissect a square into: 4, 7, 10, 13... other squares? 6, 9, 12, 15... other squares? 8, 11, 14... other squares?

Find some examples of pairs of numbers such that their sum is a factor of their product. eg. 4 + 12 = 16 and 4 × 12 = 48 and 16 is a factor of 48.

Can you find sets of sloping lines that enclose a square?

The sum of the numbers 4 and 1 [1/3] is the same as the product of 4 and 1 [1/3]; that is to say 4 + 1 [1/3] = 4 × 1 [1/3]. What other numbers have the sum equal to the product and can this be so for. . . .

Consider all two digit numbers (10, 11, . . . ,99). In writing down all these numbers, which digits occur least often, and which occur most often ? What about three digit numbers, four digit numbers. . . .

List any 3 numbers. It is always possible to find a subset of adjacent numbers that add up to a multiple of 3. Can you explain why and prove it?

Can you find a way of counting the spheres in these arrangements?

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

Think of a number, square it and subtract your starting number. Is the number youâ€™re left with odd or even? How do the images help to explain this?

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

This challenge asks you to imagine a snake coiling on itself.

Charlie has made a Magic V. Can you use his example to make some more? And how about Magic Ls, Ns and Ws?

What are the areas of these triangles? What do you notice? Can you generalise to other "families" of triangles?

Spotting patterns can be an important first step - explaining why it is appropriate to generalise is the next step, and often the most interesting and important.

Four bags contain a large number of 1s, 3s, 5s and 7s. Pick any ten numbers from the bags above so that their total is 37.

An article for teachers and pupils that encourages you to look at the mathematical properties of similar games.

Choose a couple of the sequences. Try to picture how to make the next, and the next, and the next... Can you describe your reasoning?

Can you find an efficient method to work out how many handshakes there would be if hundreds of people met?

When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...

We can show that (x + 1)² = x² + 2x + 1 by considering the area of an (x + 1) by (x + 1) square. Show in a similar way that (x + 2)² = x² + 4x + 4

The Egyptians expressed all fractions as the sum of different unit fractions. Here is a chance to explore how they could have written different fractions.

Here are two kinds of spirals for you to explore. What do you notice?

Find out what a "fault-free" rectangle is and try to make some of your own.

Can all unit fractions be written as the sum of two unit fractions?

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

In each of the pictures the invitation is for you to: Count what you see. Identify how you think the pattern would continue.

A game for 2 players. Set out 16 counters in rows of 1,3,5 and 7. Players take turns to remove any number of counters from a row. The player left with the last counter looses.

Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

Find a route from the outside to the inside of this square, stepping on as many tiles as possible.

A red square and a blue square overlap so that the corner of the red square rests on the centre of the blue square. Show that, whatever the orientation of the red square, it covers a quarter of the. . . .

This task encourages you to investigate the number of edging pieces and panes in different sized windows.

Are these statements relating to odd and even numbers always true, sometimes true or never true?

Great Granddad is very proud of his telegram from the Queen congratulating him on his hundredth birthday and he has friends who are even older than he is... When was he born?