With one cut a piece of card 16 cm by 9 cm can be made into two pieces which can be rearranged to form a square 12 cm by 12 cm. Explain how this can be done.
It's easy to work out the areas of most squares that we meet, but what if they were tilted?
If you can copy a network without lifting your pen off the paper and without drawing any line twice, then it is traversable. Decide which of these diagrams are traversable.
A little bit of algebra explains this 'magic'. Ask a friend to pick 3 consecutive numbers and to tell you a multiple of 3. Then ask them to add the four numbers and multiply by 67, and to tell you. . . .
Explore the area of families of parallelograms and triangles. Can you find rules to work out the areas?
Imagine an infinitely large sheet of square dotty paper on which you can draw triangles of any size you wish (providing each vertex is on a dot). What areas is it/is it not possible to draw?
Spotting patterns can be an important first step - explaining why it is appropriate to generalise is the next step, and often the most interesting and important.
How many moves does it take to swap over some red and blue frogs? Do you have a method?
Can you find an efficient method to work out how many handshakes there would be if hundreds of people met?
How could Penny, Tom and Matthew work out how many chocolates there are in different sized boxes?
Square numbers can be represented as the sum of consecutive odd numbers. What is the sum of 1 + 3 + ..... + 149 + 151 + 153?
Triangular numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?
This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.
The sum of the numbers 4 and 1 [1/3] is the same as the product of 4 and 1 [1/3]; that is to say 4 + 1 [1/3] = 4 � 1 [1/3]. What other numbers have the sum equal to the product and can this be so. . . .
Charlie has made a Magic V. Can you use his example to make some more? And how about Magic Ls, Ns and Ws?
Can you find sets of sloping lines that enclose a square?
List any 3 numbers. It is always possible to find a subset of adjacent numbers that add up to a multiple of 3. Can you explain why and prove it?
Can you find a way of counting the spheres in these arrangements?
It starts quite simple but great opportunities for number discoveries and patterns!
Rectangles are considered different if they vary in size or have different locations. How many different rectangles can be drawn on a chessboard?
Can you dissect a square into: 4, 7, 10, 13... other squares? 6, 9, 12, 15... other squares? 8, 11, 14... other squares?
In each of the pictures the invitation is for you to: Count what you see. Identify how you think the pattern would continue.
Find some examples of pairs of numbers such that their sum is a factor of their product. eg. 4 + 12 = 16 and 4 × 12 = 48 and 16 is a factor of 48.
An article for teachers and pupils that encourages you to look at the mathematical properties of similar games.
If you have a large supply of 3kg and 8kg weights, how many of each would you need for the average (mean) of the weights to be 6kg?
When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...
What's the largest volume of box you can make from a square of paper?
Here are some arrangements of circles. How many circles would I need to make the next size up for each? Can you create your own arrangement and investigate the number of circles it needs?
The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.
Can all unit fractions be written as the sum of two unit fractions?
We can show that (x + 1)² = x² + 2x + 1 by considering the area of an (x + 1) by (x + 1) square. Show in a similar way that (x + 2)² = x² + 4x + 4
The Egyptians expressed all fractions as the sum of different unit fractions. Here is a chance to explore how they could have written different fractions.
Imagine starting with one yellow cube and covering it all over with a single layer of red cubes, and then covering that cube with a layer of blue cubes. How many red and blue cubes would you need?
Can you figure out how sequences of beach huts are generated?
Try entering different sets of numbers in the number pyramids. How does the total at the top change?
Can you find the values at the vertices when you know the values on the edges?
It would be nice to have a strategy for disentangling any tangled ropes...
Choose a couple of the sequences. Try to picture how to make the next, and the next, and the next... Can you describe your reasoning?
Jo has three numbers which she adds together in pairs. When she does this she has three different totals: 11, 17 and 22 What are the three numbers Jo had to start with?”
A country has decided to have just two different coins, 3z and 5z coins. Which totals can be made? Is there a largest total that cannot be made? How do you know?
A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.
Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.
A game for 2 players. Set out 16 counters in rows of 1,3,5 and 7. Players take turns to remove any number of counters from a row. The player left with the last counter looses.
Four bags contain a large number of 1s, 3s, 5s and 7s. Pick any ten numbers from the bags above so that their total is 37.
Dave Hewitt suggests that there might be more to mathematics than looking at numerical results, finding patterns and generalising.
Can you work out how to win this game of Nim? Does it matter if you go first or second?
Explore the effect of reflecting in two intersecting mirror lines.
Explore the effect of combining enlargements.
A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?