Try out this number trick. What happens with different starting numbers? What do you notice?

Find the sum of all three-digit numbers each of whose digits is odd.

Try adding together the dates of all the days in one week. Now multiply the first date by 7 and add 21. Can you explain what happens?

Benâ€™s class were cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

Tom and Ben visited Numberland. Use the maps to work out the number of points each of their routes scores.

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

This challenge encourages you to explore dividing a three-digit number by a single-digit number.

Does this 'trick' for calculating multiples of 11 always work? Why or why not?

Put the numbers 1, 2, 3, 4, 5, 6 into the squares so that the numbers on each circle add up to the same amount. Can you find the rule for giving another set of six numbers?

We can arrange dots in a similar way to the 5 on a dice and they usually sit quite well into a rectangular shape. How many altogether in this 3 by 5? What happens for other sizes?

This task follows on from Build it Up and takes the ideas into three dimensions!

In a Magic Square all the rows, columns and diagonals add to the 'Magic Constant'. How would you change the magic constant of this square?

Watch this animation. What do you notice? What happens when you try more or fewer cubes in a bundle?

Surprise your friends with this magic square trick.

Sweets are given out to party-goers in a particular way. Investigate the total number of sweets received by people sitting in different positions.

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

While we were sorting some papers we found 3 strange sheets which seemed to come from small books but there were page numbers at the foot of each page. Did the pages come from the same book?

Imagine we have four bags containing numbers from a sequence. What numbers can we make now?

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

What happens if you join every second point on this circle? How about every third point? Try with different steps and see if you can predict what will happen.

What happens when you round these three-digit numbers to the nearest 100?

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

What can you say about these shapes? This problem challenges you to create shapes with different areas and perimeters.

Can you make dice stairs using the rules stated? How do you know you have all the possible stairs?

List any 3 numbers. It is always possible to find a subset of adjacent numbers that add up to a multiple of 3. Can you explain why and prove it?

Consider all two digit numbers (10, 11, . . . ,99). In writing down all these numbers, which digits occur least often, and which occur most often ? What about three digit numbers, four digit numbers. . . .

Can you put the numbers 1-5 in the V shape so that both 'arms' have the same total?

An investigation that gives you the opportunity to make and justify predictions.

Can you find all the ways to get 15 at the top of this triangle of numbers? Many opportunities to work in different ways.

Strike it Out game for an adult and child. Can you stop your partner from being able to go?

Polygonal numbers are those that are arranged in shapes as they enlarge. Explore the polygonal numbers drawn here.

This challenge, written for the Young Mathematicians' Award, invites you to explore 'centred squares'.

Use your addition and subtraction skills, combined with some strategic thinking, to beat your partner at this game.

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

You can work out the number someone else is thinking of as follows. Ask a friend to think of any natural number less than 100. Then ask them to tell you the remainders when this number is divided by. . . .

Investigate the different ways that fifteen schools could have given money in a charity fundraiser.

In each of the pictures the invitation is for you to: Count what you see. Identify how you think the pattern would continue.

In how many different ways can you break up a stick of 7 interlocking cubes? Now try with a stick of 8 cubes and a stick of 6 cubes.

Imagine we have four bags containing a large number of 1s, 4s, 7s and 10s. What numbers can we make?

Investigate the sum of the numbers on the top and bottom faces of a line of three dice. What do you notice?

Find some examples of pairs of numbers such that their sum is a factor of their product. eg. 4 + 12 = 16 and 4 × 12 = 48 and 16 is a factor of 48.

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

These squares have been made from Cuisenaire rods. Can you describe the pattern? What would the next square look like?

This activity involves rounding four-digit numbers to the nearest thousand.

Jo has three numbers which she adds together in pairs. When she does this she has three different totals: 11, 17 and 22 What are the three numbers Jo had to start with?”

Pick the number of times a week that you eat chocolate. This number must be more than one but less than ten. Multiply this number by 2. Add 5 (for Sunday). Multiply by 50... Can you explain why it. . . .

Can you dissect an equilateral triangle into 6 smaller ones? What number of smaller equilateral triangles is it NOT possible to dissect a larger equilateral triangle into?