This challenge, written for the Young Mathematicians' Award, invites you to explore 'centred squares'.

This challenge encourages you to explore dividing a three-digit number by a single-digit number.

Compare the numbers of particular tiles in one or all of these three designs, inspired by the floor tiles of a church in Cambridge.

While we were sorting some papers we found 3 strange sheets which seemed to come from small books but there were page numbers at the foot of each page. Did the pages come from the same book?

Polygonal numbers are those that are arranged in shapes as they enlarge. Explore the polygonal numbers drawn here.

An investigation that gives you the opportunity to make and justify predictions.

Can you continue this pattern of triangles and begin to predict how many sticks are used for each new "layer"?

We can arrange dots in a similar way to the 5 on a dice and they usually sit quite well into a rectangular shape. How many altogether in this 3 by 5? What happens for other sizes?

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

Tom and Ben visited Numberland. Use the maps to work out the number of points each of their routes scores.

How can you arrange these 10 matches in four piles so that when you move one match from three of the piles into the fourth, you end up with the same arrangement?

Watch this video to see how to roll the dice. Now it's your turn! What do you notice about the dice numbers you have recorded?

These squares have been made from Cuisenaire rods. Can you describe the pattern? What would the next square look like?

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

Try adding together the dates of all the days in one week. Now multiply the first date by 7 and add 21. Can you explain what happens?

What can you say about these shapes? This problem challenges you to create shapes with different areas and perimeters.

Sweets are given out to party-goers in a particular way. Investigate the total number of sweets received by people sitting in different positions.

In how many different ways can you break up a stick of 7 interlocking cubes? Now try with a stick of 8 cubes and a stick of 6 cubes.

What happens when you round these three-digit numbers to the nearest 100?

Can you put the numbers 1-5 in the V shape so that both 'arms' have the same total?

Take a counter and surround it by a ring of other counters that MUST touch two others. How many are needed?

Are these statements relating to odd and even numbers always true, sometimes true or never true?

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

How many different journeys could you make if you were going to visit four stations in this network? How about if there were five stations? Can you predict the number of journeys for seven stations?

What happens if you join every second point on this circle? How about every third point? Try with different steps and see if you can predict what will happen.

In a Magic Square all the rows, columns and diagonals add to the 'Magic Constant'. How would you change the magic constant of this square?

Watch this animation. What do you notice? What happens when you try more or fewer cubes in a bundle?

Surprise your friends with this magic square trick.

In each of the pictures the invitation is for you to: Count what you see. Identify how you think the pattern would continue.

Here are two kinds of spirals for you to explore. What do you notice?

Can you find all the ways to get 15 at the top of this triangle of numbers? Many opportunities to work in different ways.

This task follows on from Build it Up and takes the ideas into three dimensions!

Can you dissect an equilateral triangle into 6 smaller ones? What number of smaller equilateral triangles is it NOT possible to dissect a larger equilateral triangle into?

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

Can you make dice stairs using the rules stated? How do you know you have all the possible stairs?

Find a route from the outside to the inside of this square, stepping on as many tiles as possible.

These tasks give learners chance to generalise, which involves identifying an underlying structure.

Does this 'trick' for calculating multiples of 11 always work? Why or why not?

Investigate the sum of the numbers on the top and bottom faces of a line of three dice. What do you notice?

An article for teachers and pupils that encourages you to look at the mathematical properties of similar games.

Can you figure out how sequences of beach huts are generated?

Think of a number, square it and subtract your starting number. Is the number you’re left with odd or even? How do the images help to explain this?

One block is needed to make an up-and-down staircase, with one step up and one step down. How many blocks would be needed to build an up-and-down staircase with 5 steps up and 5 steps down?

Ben’s class were cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

Spotting patterns can be an important first step - explaining why it is appropriate to generalise is the next step, and often the most interesting and important.

How many pairs of numbers can you find that add up to a multiple of 11? Do you notice anything interesting about your results?

Choose a couple of the sequences. Try to picture how to make the next, and the next, and the next... Can you describe your reasoning?

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

Try out this number trick. What happens with different starting numbers? What do you notice?