Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

Tom and Ben visited Numberland. Use the maps to work out the number of points each of their routes scores.

Watch this animation. What do you notice? What happens when you try more or fewer cubes in a bundle?

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

We can arrange dots in a similar way to the 5 on a dice and they usually sit quite well into a rectangular shape. How many altogether in this 3 by 5? What happens for other sizes?

In a Magic Square all the rows, columns and diagonals add to the 'Magic Constant'. How would you change the magic constant of this square?

Try adding together the dates of all the days in one week. Now multiply the first date by 7 and add 21. Can you explain what happens?

Benâ€™s class were cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

Does this 'trick' for calculating multiples of 11 always work? Why or why not?

This challenge asks you to imagine a snake coiling on itself.

This task follows on from Build it Up and takes the ideas into three dimensions!

This challenge, written for the Young Mathematicians' Award, invites you to explore 'centred squares'.

Try out this number trick. What happens with different starting numbers? What do you notice?

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

What can you say about these shapes? This problem challenges you to create shapes with different areas and perimeters.

Put the numbers 1, 2, 3, 4, 5, 6 into the squares so that the numbers on each circle add up to the same amount. Can you find the rule for giving another set of six numbers?

Investigate the sum of the numbers on the top and bottom faces of a line of three dice. What do you notice?

Use your addition and subtraction skills, combined with some strategic thinking, to beat your partner at this game.

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

Find some examples of pairs of numbers such that their sum is a factor of their product. eg. 4 + 12 = 16 and 4 × 12 = 48 and 16 is a factor of 48.

Sweets are given out to party-goers in a particular way. Investigate the total number of sweets received by people sitting in different positions.

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Can you make dice stairs using the rules stated? How do you know you have all the possible stairs?

Find the sum of all three-digit numbers each of whose digits is odd.

Strike it Out game for an adult and child. Can you stop your partner from being able to go?

What happens if you join every second point on this circle? How about every third point? Try with different steps and see if you can predict what will happen.

Can you find all the ways to get 15 at the top of this triangle of numbers? Many opportunities to work in different ways.

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

This task encourages you to investigate the number of edging pieces and panes in different sized windows.

Watch this animation. What do you see? Can you explain why this happens?

Take a look at the video of this trick. Can you perform it yourself? Why is this maths and not magic?

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

The Egyptians expressed all fractions as the sum of different unit fractions. Here is a chance to explore how they could have written different fractions.

Find a route from the outside to the inside of this square, stepping on as many tiles as possible.

Can all unit fractions be written as the sum of two unit fractions?

List any 3 numbers. It is always possible to find a subset of adjacent numbers that add up to a multiple of 3. Can you explain why and prove it?

Here are two kinds of spirals for you to explore. What do you notice?

The sum of the numbers 4 and 1 [1/3] is the same as the product of 4 and 1 [1/3]; that is to say 4 + 1 [1/3] = 4 × 1 [1/3]. What other numbers have the sum equal to the product and can this be so for. . . .

How many different journeys could you make if you were going to visit four stations in this network? How about if there were five stations? Can you predict the number of journeys for seven stations?

One block is needed to make an up-and-down staircase, with one step up and one step down. How many blocks would be needed to build an up-and-down staircase with 5 steps up and 5 steps down?

Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

Can you dissect an equilateral triangle into 6 smaller ones? What number of smaller equilateral triangles is it NOT possible to dissect a larger equilateral triangle into?

Are these statements relating to odd and even numbers always true, sometimes true or never true?

This activity involves rounding four-digit numbers to the nearest thousand.

Watch this film carefully. Can you find a general rule for explaining when the dot will be this same distance from the horizontal axis?

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

Watch this video to see how to roll the dice. Now it's your turn! What do you notice about the dice numbers you have recorded?

What happens when you round these three-digit numbers to the nearest 100?

Can you explain the strategy for winning this game with any target?