This challenge asks you to imagine a snake coiling on itself.

Use your addition and subtraction skills, combined with some strategic thinking, to beat your partner at this game.

Find the sum of all three-digit numbers each of whose digits is odd.

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

Put the numbers 1, 2, 3, 4, 5, 6 into the squares so that the numbers on each circle add up to the same amount. Can you find the rule for giving another set of six numbers?

Try adding together the dates of all the days in one week. Now multiply the first date by 7 and add 21. Can you explain what happens?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Try out this number trick. What happens with different starting numbers? What do you notice?

Strike it Out game for an adult and child. Can you stop your partner from being able to go?

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

We can arrange dots in a similar way to the 5 on a dice and they usually sit quite well into a rectangular shape. How many altogether in this 3 by 5? What happens for other sizes?

Tom and Ben visited Numberland. Use the maps to work out the number of points each of their routes scores.

This task follows on from Build it Up and takes the ideas into three dimensions!

Investigate the different ways that fifteen schools could have given money in a charity fundraiser.

Ben’s class were cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

In a Magic Square all the rows, columns and diagonals add to the 'Magic Constant'. How would you change the magic constant of this square?

Does this 'trick' for calculating multiples of 11 always work? Why or why not?

Watch this animation. What do you notice? What happens when you try more or fewer cubes in a bundle?

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

In this game for two players, the idea is to take it in turns to choose 1, 3, 5 or 7. The winner is the first to make the total 37.

Can all unit fractions be written as the sum of two unit fractions?

What can you say about these shapes? This problem challenges you to create shapes with different areas and perimeters.

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

Sweets are given out to party-goers in a particular way. Investigate the total number of sweets received by people sitting in different positions.

Investigate the sum of the numbers on the top and bottom faces of a line of three dice. What do you notice?

Can you put the numbers 1-5 in the V shape so that both 'arms' have the same total?

This challenge, written for the Young Mathematicians' Award, invites you to explore 'centred squares'.

An investigation that gives you the opportunity to make and justify predictions.

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

This challenge encourages you to explore dividing a three-digit number by a single-digit number.

The Egyptians expressed all fractions as the sum of different unit fractions. Here is a chance to explore how they could have written different fractions.

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

You can work out the number someone else is thinking of as follows. Ask a friend to think of any natural number less than 100. Then ask them to tell you the remainders when this number is divided by. . . .

Can you make dice stairs using the rules stated? How do you know you have all the possible stairs?

Can you find all the ways to get 15 at the top of this triangle of numbers? Many opportunities to work in different ways.

What happens if you join every second point on this circle? How about every third point? Try with different steps and see if you can predict what will happen.

Here are two kinds of spirals for you to explore. What do you notice?

It would be nice to have a strategy for disentangling any tangled ropes...

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

An article for teachers and pupils that encourages you to look at the mathematical properties of similar games.

In how many different ways can you break up a stick of 7 interlocking cubes? Now try with a stick of 8 cubes and a stick of 6 cubes.

These squares have been made from Cuisenaire rods. Can you describe the pattern? What would the next square look like?

Imagine we have four bags containing numbers from a sequence. What numbers can we make now?

Imagine we have four bags containing a large number of 1s, 4s, 7s and 10s. What numbers can we make?

Polygonal numbers are those that are arranged in shapes as they enlarge. Explore the polygonal numbers drawn here.

Think of a number, square it and subtract your starting number. Is the number you’re left with odd or even? How do the images help to explain this?

This activity involves rounding four-digit numbers to the nearest thousand.

What happens when you round these three-digit numbers to the nearest 100?

Watch this video to see how to roll the dice. Now it's your turn! What do you notice about the dice numbers you have recorded?