Try out this number trick. What happens with different starting numbers? What do you notice?

This task follows on from Build it Up and takes the ideas into three dimensions!

We can arrange dots in a similar way to the 5 on a dice and they usually sit quite well into a rectangular shape. How many altogether in this 3 by 5? What happens for other sizes?

Put the numbers 1, 2, 3, 4, 5, 6 into the squares so that the numbers on each circle add up to the same amount. Can you find the rule for giving another set of six numbers?

Use your addition and subtraction skills, combined with some strategic thinking, to beat your partner at this game.

Try adding together the dates of all the days in one week. Now multiply the first date by 7 and add 21. Can you explain what happens?

Tom and Ben visited Numberland. Use the maps to work out the number of points each of their routes scores.

Ben’s class were cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

Find the sum of all three-digit numbers each of whose digits is odd.

Strike it Out game for an adult and child. Can you stop your partner from being able to go?

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

Investigate the different ways that fifteen schools could have given money in a charity fundraiser.

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Watch this animation. What do you notice? What happens when you try more or fewer cubes in a bundle?

In a Magic Square all the rows, columns and diagonals add to the 'Magic Constant'. How would you change the magic constant of this square?

This challenge asks you to imagine a snake coiling on itself.

Does this 'trick' for calculating multiples of 11 always work? Why or why not?

This challenge encourages you to explore dividing a three-digit number by a single-digit number.

While we were sorting some papers we found 3 strange sheets which seemed to come from small books but there were page numbers at the foot of each page. Did the pages come from the same book?

This challenge, written for the Young Mathematicians' Award, invites you to explore 'centred squares'.

What can you say about these shapes? This problem challenges you to create shapes with different areas and perimeters.

Sweets are given out to party-goers in a particular way. Investigate the total number of sweets received by people sitting in different positions.

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

In this game for two players, the idea is to take it in turns to choose 1, 3, 5 or 7. The winner is the first to make the total 37.

Investigate the sum of the numbers on the top and bottom faces of a line of three dice. What do you notice?

Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

Polygonal numbers are those that are arranged in shapes as they enlarge. Explore the polygonal numbers drawn here.

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

An investigation that gives you the opportunity to make and justify predictions.

What happens if you join every second point on this circle? How about every third point? Try with different steps and see if you can predict what will happen.

Can you put the numbers 1-5 in the V shape so that both 'arms' have the same total?

Are these statements always true, sometimes true or never true?

Can you make dice stairs using the rules stated? How do you know you have all the possible stairs?

Can you find all the ways to get 15 at the top of this triangle of numbers? Many opportunities to work in different ways.

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

Can all unit fractions be written as the sum of two unit fractions?

Are these statements relating to odd and even numbers always true, sometimes true or never true?

You can work out the number someone else is thinking of as follows. Ask a friend to think of any natural number less than 100. Then ask them to tell you the remainders when this number is divided by. . . .

The Egyptians expressed all fractions as the sum of different unit fractions. Here is a chance to explore how they could have written different fractions.

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

One block is needed to make an up-and-down staircase, with one step up and one step down. How many blocks would be needed to build an up-and-down staircase with 5 steps up and 5 steps down?

Think of a number, square it and subtract your starting number. Is the number you’re left with odd or even? How do the images help to explain this?

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

It would be nice to have a strategy for disentangling any tangled ropes...

In how many different ways can you break up a stick of 7 interlocking cubes? Now try with a stick of 8 cubes and a stick of 6 cubes.

Imagine we have four bags containing a large number of 1s, 4s, 7s and 10s. What numbers can we make?

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

An article for teachers and pupils that encourages you to look at the mathematical properties of similar games.