Ben’s class were cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

Try adding together the dates of all the days in one week. Now multiply the first date by 7 and add 21. Can you explain what happens?

Try out this number trick. What happens with different starting numbers? What do you notice?

Find the sum of all three-digit numbers each of whose digits is odd.

In a Magic Square all the rows, columns and diagonals add to the 'Magic Constant'. How would you change the magic constant of this square?

Watch this animation. What do you notice? What happens when you try more or fewer cubes in a bundle?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

This task follows on from Build it Up and takes the ideas into three dimensions!

Does this 'trick' for calculating multiples of 11 always work? Why or why not?

We can arrange dots in a similar way to the 5 on a dice and they usually sit quite well into a rectangular shape. How many altogether in this 3 by 5? What happens for other sizes?

Put the numbers 1, 2, 3, 4, 5, 6 into the squares so that the numbers on each circle add up to the same amount. Can you find the rule for giving another set of six numbers?

Tom and Ben visited Numberland. Use the maps to work out the number of points each of their routes scores.

Can you put the numbers 1-5 in the V shape so that both 'arms' have the same total?

While we were sorting some papers we found 3 strange sheets which seemed to come from small books but there were page numbers at the foot of each page. Did the pages come from the same book?

In this game for two players, the idea is to take it in turns to choose 1, 3, 5 or 7. The winner is the first to make the total 37.

This challenge encourages you to explore dividing a three-digit number by a single-digit number.

Polygonal numbers are those that are arranged in shapes as they enlarge. Explore the polygonal numbers drawn here.

An investigation that gives you the opportunity to make and justify predictions.

In how many different ways can you break up a stick of 7 interlocking cubes? Now try with a stick of 8 cubes and a stick of 6 cubes.

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

What can you say about these shapes? This problem challenges you to create shapes with different areas and perimeters.

Sweets are given out to party-goers in a particular way. Investigate the total number of sweets received by people sitting in different positions.

Use your addition and subtraction skills, combined with some strategic thinking, to beat your partner at this game.

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

This challenge, written for the Young Mathematicians' Award, invites you to explore 'centred squares'.

Here are two kinds of spirals for you to explore. What do you notice?

Can you continue this pattern of triangles and begin to predict how many sticks are used for each new "layer"?

What happens when you round these three-digit numbers to the nearest 100?

Can you make dice stairs using the rules stated? How do you know you have all the possible stairs?

Compare the numbers of particular tiles in one or all of these three designs, inspired by the floor tiles of a church in Cambridge.

What happens if you join every second point on this circle? How about every third point? Try with different steps and see if you can predict what will happen.

Can you find all the ways to get 15 at the top of this triangle of numbers? Many opportunities to work in different ways.

Strike it Out game for an adult and child. Can you stop your partner from being able to go?

You can work out the number someone else is thinking of as follows. Ask a friend to think of any natural number less than 100. Then ask them to tell you the remainders when this number is divided by. . . .

Imagine we have four bags containing numbers from a sequence. What numbers can we make now?

List any 3 numbers. It is always possible to find a subset of adjacent numbers that add up to a multiple of 3. Can you explain why and prove it?

Are these statements relating to odd and even numbers always true, sometimes true or never true?

Take a counter and surround it by a ring of other counters that MUST touch two others. How many are needed?

These squares have been made from Cuisenaire rods. Can you describe the pattern? What would the next square look like?

Can you dissect an equilateral triangle into 6 smaller ones? What number of smaller equilateral triangles is it NOT possible to dissect a larger equilateral triangle into?

Investigate the sum of the numbers on the top and bottom faces of a line of three dice. What do you notice?

Are these statements always true, sometimes true or never true?

Take a look at the video of this trick. Can you perform it yourself? Why is this maths and not magic?

How many different journeys could you make if you were going to visit four stations in this network? How about if there were five stations? Can you predict the number of journeys for seven stations?

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

Think of a number, square it and subtract your starting number. Is the number you’re left with odd or even? How do the images help to explain this?