I added together some of my neighbours' house numbers. Can you explain the patterns I noticed?

Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

List any 3 numbers. It is always possible to find a subset of adjacent numbers that add up to a multiple of 3. Can you explain why and prove it?

Find some examples of pairs of numbers such that their sum is a factor of their product. eg. 4 + 12 = 16 and 4 × 12 = 48 and 16 is a factor of 48.

How many pairs of numbers can you find that add up to a multiple of 11? Do you notice anything interesting about your results?

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

Take a look at the multiplication square. The first eleven triangle numbers have been identified. Can you see a pattern? Does the pattern continue?

15 = 7 + 8 and 10 = 1 + 2 + 3 + 4. Can you say which numbers can be expressed as the sum of two or more consecutive integers?

Think of a number, add one, double it, take away 3, add the number you first thought of, add 7, divide by 3 and take away the number you first thought of. You should now be left with 2. How do I. . . .

Make some loops out of regular hexagons. What rules can you discover?

Spotting patterns can be an important first step - explaining why it is appropriate to generalise is the next step, and often the most interesting and important.

We can show that (x + 1)² = x² + 2x + 1 by considering the area of an (x + 1) by (x + 1) square. Show in a similar way that (x + 2)² = x² + 4x + 4

Can you explain the strategy for winning this game with any target?

Can you find an efficient method to work out how many handshakes there would be if hundreds of people met?

Investigate the sum of the numbers on the top and bottom faces of a line of three dice. What do you notice?

Imagine we have four bags containing a large number of 1s, 4s, 7s and 10s. What numbers can we make?

Charlie has made a Magic V. Can you use his example to make some more? And how about Magic Ls, Ns and Ws?

Imagine we have four bags containing numbers from a sequence. What numbers can we make now?

Got It game for an adult and child. How can you play so that you know you will always win?

Are these statements relating to odd and even numbers always true, sometimes true or never true?

These tasks give learners chance to generalise, which involves identifying an underlying structure.

Find a route from the outside to the inside of this square, stepping on as many tiles as possible.

The NRICH team are always looking for new ways to engage teachers and pupils in problem solving. Here we explain the thinking behind maths trails.

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

This task encourages you to investigate the number of edging pieces and panes in different sized windows.

You can work out the number someone else is thinking of as follows. Ask a friend to think of any natural number less than 100. Then ask them to tell you the remainders when this number is divided by. . . .

Pick the number of times a week that you eat chocolate. This number must be more than one but less than ten. Multiply this number by 2. Add 5 (for Sunday). Multiply by 50... Can you explain why it. . . .

Can you find sets of sloping lines that enclose a square?

Consider all two digit numbers (10, 11, . . . ,99). In writing down all these numbers, which digits occur least often, and which occur most often ? What about three digit numbers, four digit numbers. . . .

The sum of the numbers 4 and 1 [1/3] is the same as the product of 4 and 1 [1/3]; that is to say 4 + 1 [1/3] = 4 � 1 [1/3]. What other numbers have the sum equal to the product and can this be so. . . .

How could Penny, Tom and Matthew work out how many chocolates there are in different sized boxes?

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

Triangular numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

A country has decided to have just two different coins, 3z and 5z coins. Which totals can be made? Is there a largest total that cannot be made? How do you know?

One block is needed to make an up-and-down staircase, with one step up and one step down. How many blocks would be needed to build an up-and-down staircase with 5 steps up and 5 steps down?

The Egyptians expressed all fractions as the sum of different unit fractions. Here is a chance to explore how they could have written different fractions.

A little bit of algebra explains this 'magic'. Ask a friend to pick 3 consecutive numbers and to tell you a multiple of 3. Then ask them to add the four numbers and multiply by 67, and to tell you. . . .

Can all unit fractions be written as the sum of two unit fractions?

What are the areas of these triangles? What do you notice? Can you generalise to other "families" of triangles?

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

An article for teachers and pupils that encourages you to look at the mathematical properties of similar games.

Here are two kinds of spirals for you to explore. What do you notice?

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

Jo has three numbers which she adds together in pairs. When she does this she has three different totals: 11, 17 and 22 What are the three numbers Jo had to start with?”

Choose a couple of the sequences. Try to picture how to make the next, and the next, and the next... Can you describe your reasoning?

When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...

Can you find the values at the vertices when you know the values on the edges?

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?