This challenge asks you to imagine a snake coiling on itself.

The Egyptians expressed all fractions as the sum of different unit fractions. Here is a chance to explore how they could have written different fractions.

Can all unit fractions be written as the sum of two unit fractions?

Benâ€™s class were cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

Can you find all the ways to get 15 at the top of this triangle of numbers? Many opportunities to work in different ways.

This task follows on from Build it Up and takes the ideas into three dimensions!

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

This challenge, written for the Young Mathematicians' Award, invites you to explore 'centred squares'.

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

Does this 'trick' for calculating multiples of 11 always work? Why or why not?

You can work out the number someone else is thinking of as follows. Ask a friend to think of any natural number less than 100. Then ask them to tell you the remainders when this number is divided by. . . .

Try out this number trick. What happens with different starting numbers? What do you notice?

Tom and Ben visited Numberland. Use the maps to work out the number of points each of their routes scores.

Sweets are given out to party-goers in a particular way. Investigate the total number of sweets received by people sitting in different positions.

Think of a number, square it and subtract your starting number. Is the number youâ€™re left with odd or even? How do the images help to explain this?

Investigate the sum of the numbers on the top and bottom faces of a line of three dice. What do you notice?

Use your addition and subtraction skills, combined with some strategic thinking, to beat your partner at this game.

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

Can you explain the strategy for winning this game with any target?

An investigation that gives you the opportunity to make and justify predictions.

The sum of the numbers 4 and 1 [1/3] is the same as the product of 4 and 1 [1/3]; that is to say 4 + 1 [1/3] = 4 × 1 [1/3]. What other numbers have the sum equal to the product and can this be so for. . . .

Find some examples of pairs of numbers such that their sum is a factor of their product. eg. 4 + 12 = 16 and 4 × 12 = 48 and 16 is a factor of 48.

We can arrange dots in a similar way to the 5 on a dice and they usually sit quite well into a rectangular shape. How many altogether in this 3 by 5? What happens for other sizes?

These squares have been made from Cuisenaire rods. Can you describe the pattern? What would the next square look like?

In this game for two players, the idea is to take it in turns to choose 1, 3, 5 or 7. The winner is the first to make the total 37.

Got It game for an adult and child. How can you play so that you know you will always win?

Watch this animation. What do you notice? What happens when you try more or fewer cubes in a bundle?

What happens if you join every second point on this circle? How about every third point? Try with different steps and see if you can predict what will happen.

In a Magic Square all the rows, columns and diagonals add to the 'Magic Constant'. How would you change the magic constant of this square?

Find a route from the outside to the inside of this square, stepping on as many tiles as possible.

Strike it Out game for an adult and child. Can you stop your partner from being able to go?

Can you dissect an equilateral triangle into 6 smaller ones? What number of smaller equilateral triangles is it NOT possible to dissect a larger equilateral triangle into?

Find the sum of all three-digit numbers each of whose digits is odd.

Are these statements relating to odd and even numbers always true, sometimes true or never true?

This challenge encourages you to explore dividing a three-digit number by a single-digit number.

Put the numbers 1, 2, 3, 4, 5, 6 into the squares so that the numbers on each circle add up to the same amount. Can you find the rule for giving another set of six numbers?

Watch this film carefully. Can you find a general rule for explaining when the dot will be this same distance from the horizontal axis?

Try adding together the dates of all the days in one week. Now multiply the first date by 7 and add 21. Can you explain what happens?

This task encourages you to investigate the number of edging pieces and panes in different sized windows.

What can you say about these shapes? This problem challenges you to create shapes with different areas and perimeters.

Charlie has made a Magic V. Can you use his example to make some more? And how about Magic Ls, Ns and Ws?

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

Watch this animation. What do you see? Can you explain why this happens?

It would be nice to have a strategy for disentangling any tangled ropes...

Spotting patterns can be an important first step - explaining why it is appropriate to generalise is the next step, and often the most interesting and important.