Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Ben’s class were cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

Strike it Out game for an adult and child. Can you stop your partner from being able to go?

In this game for two players, the idea is to take it in turns to choose 1, 3, 5 or 7. The winner is the first to make the total 37.

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

Does this 'trick' for calculating multiples of 11 always work? Why or why not?

Use your addition and subtraction skills, combined with some strategic thinking, to beat your partner at this game.

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

Find a route from the outside to the inside of this square, stepping on as many tiles as possible.

This task follows on from Build it Up and takes the ideas into three dimensions!

Can you find all the ways to get 15 at the top of this triangle of numbers? Many opportunities to work in different ways.

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

Watch this film carefully. Can you find a general rule for explaining when the dot will be this same distance from the horizontal axis?

This challenge, written for the Young Mathematicians' Award, invites you to explore 'centred squares'.

Try adding together the dates of all the days in one week. Now multiply the first date by 7 and add 21. Can you explain what happens?

Sweets are given out to party-goers in a particular way. Investigate the total number of sweets received by people sitting in different positions.

Can you explain the strategy for winning this game with any target?

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

We can arrange dots in a similar way to the 5 on a dice and they usually sit quite well into a rectangular shape. How many altogether in this 3 by 5? What happens for other sizes?

Tom and Ben visited Numberland. Use the maps to work out the number of points each of their routes scores.

Think of a number, square it and subtract your starting number. Is the number you’re left with odd or even? How do the images help to explain this?

Try out this number trick. What happens with different starting numbers? What do you notice?

What happens if you join every second point on this circle? How about every third point? Try with different steps and see if you can predict what will happen.

Put the numbers 1, 2, 3, 4, 5, 6 into the squares so that the numbers on each circle add up to the same amount. Can you find the rule for giving another set of six numbers?

In a Magic Square all the rows, columns and diagonals add to the 'Magic Constant'. How would you change the magic constant of this square?

Are these statements relating to odd and even numbers always true, sometimes true or never true?

Got It game for an adult and child. How can you play so that you know you will always win?

Watch this video to see how to roll the dice. Now it's your turn! What do you notice about the dice numbers you have recorded?

Find the sum of all three-digit numbers each of whose digits is odd.

You can work out the number someone else is thinking of as follows. Ask a friend to think of any natural number less than 100. Then ask them to tell you the remainders when this number is divided by. . . .

Watch this animation. What do you notice? What happens when you try more or fewer cubes in a bundle?

This task encourages you to investigate the number of edging pieces and panes in different sized windows.

We can show that (x + 1)² = x² + 2x + 1 by considering the area of an (x + 1) by (x + 1) square. Show in a similar way that (x + 2)² = x² + 4x + 4

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

Take a look at the video of this trick. Can you perform it yourself? Why is this maths and not magic?

In how many different ways can you break up a stick of 7 interlocking cubes? Now try with a stick of 8 cubes and a stick of 6 cubes.

Are these statements always true, sometimes true or never true?

Use the interactivity to investigate what kinds of triangles can be drawn on peg boards with different numbers of pegs.

An investigation that gives you the opportunity to make and justify predictions.

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

Can you make dice stairs using the rules stated? How do you know you have all the possible stairs?

Here are some arrangements of circles. How many circles would I need to make the next size up for each? Can you create your own arrangement and investigate the number of circles it needs?

Here are two kinds of spirals for you to explore. What do you notice?

Can you put the numbers 1-5 in the V shape so that both 'arms' have the same total?

Investigate the sum of the numbers on the top and bottom faces of a line of three dice. What do you notice?

This challenge encourages you to explore dividing a three-digit number by a single-digit number.

What can you say about these shapes? This problem challenges you to create shapes with different areas and perimeters.