The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

An article for teachers and pupils that encourages you to look at the mathematical properties of similar games.

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

Nim-7 game for an adult and child. Who will be the one to take the last counter?

A game for 2 players with similarities to NIM. Place one counter on each spot on the games board. Players take it is turns to remove 1 or 2 adjacent counters. The winner picks up the last counter.

A game for 2 players. Set out 16 counters in rows of 1,3,5 and 7. Players take turns to remove any number of counters from a row. The player left with the last counter looses.

Make some loops out of regular hexagons. What rules can you discover?

Think of a number, add one, double it, take away 3, add the number you first thought of, add 7, divide by 3 and take away the number you first thought of. You should now be left with 2. How do I. . . .

When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...

We can show that (x + 1)² = x² + 2x + 1 by considering the area of an (x + 1) by (x + 1) square. Show in a similar way that (x + 2)² = x² + 4x + 4

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

Pick the number of times a week that you eat chocolate. This number must be more than one but less than ten. Multiply this number by 2. Add 5 (for Sunday). Multiply by 50... Can you explain why it. . . .

A little bit of algebra explains this 'magic'. Ask a friend to pick 3 consecutive numbers and to tell you a multiple of 3. Then ask them to add the four numbers and multiply by 67, and to tell you. . . .

Got It game for an adult and child. How can you play so that you know you will always win?

Can you find an efficient method to work out how many handshakes there would be if hundreds of people met?

Find a route from the outside to the inside of this square, stepping on as many tiles as possible.

Can you work out how to win this game of Nim? Does it matter if you go first or second?

Triangular numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

Consider all two digit numbers (10, 11, . . . ,99). In writing down all these numbers, which digits occur least often, and which occur most often ? What about three digit numbers, four digit numbers. . . .

The sum of the numbers 4 and 1 [1/3] is the same as the product of 4 and 1 [1/3]; that is to say 4 + 1 [1/3] = 4 × 1 [1/3]. What other numbers have the sum equal to the product and can this be so for. . . .

Can you find sets of sloping lines that enclose a square?

List any 3 numbers. It is always possible to find a subset of adjacent numbers that add up to a multiple of 3. Can you explain why and prove it?

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

Four bags contain a large number of 1s, 3s, 5s and 7s. Pick any ten numbers from the bags above so that their total is 37.

Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

I added together some of my neighbours' house numbers. Can you explain the patterns I noticed?

What are the areas of these triangles? What do you notice? Can you generalise to other "families" of triangles?

Spotting patterns can be an important first step - explaining why it is appropriate to generalise is the next step, and often the most interesting and important.

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

Here are two kinds of spirals for you to explore. What do you notice?

What's the largest volume of box you can make from a square of paper?

Can all unit fractions be written as the sum of two unit fractions?

The Egyptians expressed all fractions as the sum of different unit fractions. Here is a chance to explore how they could have written different fractions.

How could Penny, Tom and Matthew work out how many chocolates there are in different sized boxes?

It starts quite simple but great opportunities for number discoveries and patterns!

In this game for two players, the idea is to take it in turns to choose 1, 3, 5 or 7. The winner is the first to make the total 37.

Watch this video to see how to roll the dice. Now it's your turn! What do you notice about the dice numbers you have recorded?

Are these statements relating to odd and even numbers always true, sometimes true or never true?

Imagine starting with one yellow cube and covering it all over with a single layer of red cubes, and then covering that cube with a layer of blue cubes. How many red and blue cubes would you need?

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

Explore the effect of combining enlargements.

Explore the effect of reflecting in two intersecting mirror lines.

Watch this film carefully. Can you find a general rule for explaining when the dot will be this same distance from the horizontal axis?

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

In how many ways can you arrange three dice side by side on a surface so that the sum of the numbers on each of the four faces (top, bottom, front and back) is equal?

Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.

Great Granddad is very proud of his telegram from the Queen congratulating him on his hundredth birthday and he has friends who are even older than he is... When was he born?

Can you explain the strategy for winning this game with any target?

This task encourages you to investigate the number of edging pieces and panes in different sized windows.