Can you find a way of counting the spheres in these arrangements?

In each of the pictures the invitation is for you to: Count what you see. Identify how you think the pattern would continue.

Watch this animation. What do you see? Can you explain why this happens?

Here are some arrangements of circles. How many circles would I need to make the next size up for each? Can you create your own arrangement and investigate the number of circles it needs?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Think of a number, square it and subtract your starting number. Is the number you’re left with odd or even? How do the images help to explain this?

Can you dissect an equilateral triangle into 6 smaller ones? What number of smaller equilateral triangles is it NOT possible to dissect a larger equilateral triangle into?

How can you arrange these 10 matches in four piles so that when you move one match from three of the piles into the fourth, you end up with the same arrangement?

Delight your friends with this cunning trick! Can you explain how it works?

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

Use your addition and subtraction skills, combined with some strategic thinking, to beat your partner at this game.

This task follows on from Build it Up and takes the ideas into three dimensions!

In a Magic Square all the rows, columns and diagonals add to the 'Magic Constant'. How would you change the magic constant of this square?

Can you make dice stairs using the rules stated? How do you know you have all the possible stairs?

Can you find all the ways to get 15 at the top of this triangle of numbers? Many opportunities to work in different ways.

Find out what a "fault-free" rectangle is and try to make some of your own.

Triangular numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

Here are two kinds of spirals for you to explore. What do you notice?

This challenge, written for the Young Mathematicians' Award, invites you to explore 'centred squares'.

We can arrange dots in a similar way to the 5 on a dice and they usually sit quite well into a rectangular shape. How many altogether in this 3 by 5? What happens for other sizes?

If you can copy a network without lifting your pen off the paper and without drawing any line twice, then it is traversable. Decide which of these diagrams are traversable.

Imagine starting with one yellow cube and covering it all over with a single layer of red cubes, and then covering that cube with a layer of blue cubes. How many red and blue cubes would you need?

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.

Square numbers can be represented as the sum of consecutive odd numbers. What is the sum of 1 + 3 + ..... + 149 + 151 + 153?

Ben’s class were cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

Use the interactivity to investigate what kinds of triangles can be drawn on peg boards with different numbers of pegs.

These squares have been made from Cuisenaire rods. Can you describe the pattern? What would the next square look like?

How could Penny, Tom and Matthew work out how many chocolates there are in different sized boxes?

This challenge encourages you to explore dividing a three-digit number by a single-digit number.

Watch this animation. What do you notice? What happens when you try more or fewer cubes in a bundle?

Take a look at the video of this trick. Can you perform it yourself? Why is this maths and not magic?

Find a route from the outside to the inside of this square, stepping on as many tiles as possible.

Are these statements relating to odd and even numbers always true, sometimes true or never true?

Strike it Out game for an adult and child. Can you stop your partner from being able to go?

Watch this video to see how to roll the dice. Now it's your turn! What do you notice about the dice numbers you have recorded?

In this game for two players, the idea is to take it in turns to choose 1, 3, 5 or 7. The winner is the first to make the total 37.

Does this 'trick' for calculating multiples of 11 always work? Why or why not?

Can you describe this route to infinity? Where will the arrows take you next?

This challenge asks you to imagine a snake coiling on itself.

Polygonal numbers are those that are arranged in shapes as they enlarge. Explore the polygonal numbers drawn here.

Try out this number trick. What happens with different starting numbers? What do you notice?

Tom and Ben visited Numberland. Use the maps to work out the number of points each of their routes scores.

Rectangles are considered different if they vary in size or have different locations. How many different rectangles can be drawn on a chessboard?

Sweets are given out to party-goers in a particular way. Investigate the total number of sweets received by people sitting in different positions.

What can you say about these shapes? This problem challenges you to create shapes with different areas and perimeters.

Try entering different sets of numbers in the number pyramids. How does the total at the top change?