The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

Can you find all the ways to get 15 at the top of this triangle of numbers? Many opportunities to work in different ways.

Strike it Out game for an adult and child. Can you stop your partner from being able to go?

Got It game for an adult and child. How can you play so that you know you will always win?

Is there an efficient way to work out how many factors a large number has?

You can work out the number someone else is thinking of as follows. Ask a friend to think of any natural number less than 100. Then ask them to tell you the remainders when this number is divided by. . . .

Can you explain the strategy for winning this game with any target?

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

Use your addition and subtraction skills, combined with some strategic thinking, to beat your partner at this game.

In this game for two players, the idea is to take it in turns to choose 1, 3, 5 or 7. The winner is the first to make the total 37.

The NRICH team are always looking for new ways to engage teachers and pupils in problem solving. Here we explain the thinking behind maths trails.

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

This challenge encourages you to explore dividing a three-digit number by a single-digit number.

A game for 2 players with similarities to NIM. Place one counter on each spot on the games board. Players take it is turns to remove 1 or 2 adjacent counters. The winner picks up the last counter.

Investigate the sum of the numbers on the top and bottom faces of a line of three dice. What do you notice?

Does this 'trick' for calculating multiples of 11 always work? Why or why not?

A game for 2 players. Set out 16 counters in rows of 1,3,5 and 7. Players take turns to remove any number of counters from a row. The player left with the last counter looses.

This challenge asks you to imagine a snake coiling on itself.

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

List any 3 numbers. It is always possible to find a subset of adjacent numbers that add up to a multiple of 3. Can you explain why and prove it?

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

An article for teachers and pupils that encourages you to look at the mathematical properties of similar games.

Sweets are given out to party-goers in a particular way. Investigate the total number of sweets received by people sitting in different positions.

This challenge, written for the Young Mathematicians' Award, invites you to explore 'centred squares'.

Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

Can you work out how to win this game of Nim? Does it matter if you go first or second?

What happens if you join every second point on this circle? How about every third point? Try with different steps and see if you can predict what will happen.

Watch this film carefully. Can you find a general rule for explaining when the dot will be this same distance from the horizontal axis?

Nim-7 game for an adult and child. Who will be the one to take the last counter?

This task encourages you to investigate the number of edging pieces and panes in different sized windows.

Great Granddad is very proud of his telegram from the Queen congratulating him on his hundredth birthday and he has friends who are even older than he is... When was he born?

Triangular numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

Think of a number, square it and subtract your starting number. Is the number youâ€™re left with odd or even? How do the images help to explain this?

Tom and Ben visited Numberland. Use the maps to work out the number of points each of their routes scores.

This task follows on from Build it Up and takes the ideas into three dimensions!

A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?

Investigate the different ways that fifteen schools could have given money in a charity fundraiser.

Spotting patterns can be an important first step - explaining why it is appropriate to generalise is the next step, and often the most interesting and important.

Are these statements always true, sometimes true or never true?

The Egyptians expressed all fractions as the sum of different unit fractions. Here is a chance to explore how they could have written different fractions.

Take a look at the video of this trick. Can you perform it yourself? Why is this maths and not magic?

Consider all two digit numbers (10, 11, . . . ,99). In writing down all these numbers, which digits occur least often, and which occur most often ? What about three digit numbers, four digit numbers. . . .

Can all unit fractions be written as the sum of two unit fractions?

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

Can you find the values at the vertices when you know the values on the edges?

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

Surprise your friends with this magic square trick.