Is there an efficient way to work out how many factors a large number has?

Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

Ben’s class were cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

Investigate the sum of the numbers on the top and bottom faces of a line of three dice. What do you notice?

Great Granddad is very proud of his telegram from the Queen congratulating him on his hundredth birthday and he has friends who are even older than he is... When was he born?

Does this 'trick' for calculating multiples of 11 always work? Why or why not?

Try adding together the dates of all the days in one week. Now multiply the first date by 7 and add 21. Can you explain what happens?

This challenge encourages you to explore dividing a three-digit number by a single-digit number.

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

List any 3 numbers. It is always possible to find a subset of adjacent numbers that add up to a multiple of 3. Can you explain why and prove it?

Put the numbers 1, 2, 3, 4, 5, 6 into the squares so that the numbers on each circle add up to the same amount. Can you find the rule for giving another set of six numbers?

Consider all two digit numbers (10, 11, . . . ,99). In writing down all these numbers, which digits occur least often, and which occur most often ? What about three digit numbers, four digit numbers. . . .

Try out this number trick. What happens with different starting numbers? What do you notice?

You can work out the number someone else is thinking of as follows. Ask a friend to think of any natural number less than 100. Then ask them to tell you the remainders when this number is divided by. . . .

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

Can you put the numbers 1-5 in the V shape so that both 'arms' have the same total?

Find the sum of all three-digit numbers each of whose digits is odd.

Tom and Ben visited Numberland. Use the maps to work out the number of points each of their routes scores.

This task follows on from Build it Up and takes the ideas into three dimensions!

Imagine we have four bags containing numbers from a sequence. What numbers can we make now?

Are these statements always true, sometimes true or never true?

In a Magic Square all the rows, columns and diagonals add to the 'Magic Constant'. How would you change the magic constant of this square?

What happens if you join every second point on this circle? How about every third point? Try with different steps and see if you can predict what will happen.

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

Imagine we have four bags containing a large number of 1s, 4s, 7s and 10s. What numbers can we make?

Sweets are given out to party-goers in a particular way. Investigate the total number of sweets received by people sitting in different positions.

I added together some of my neighbours' house numbers. Can you explain the patterns I noticed?

Use your addition and subtraction skills, combined with some strategic thinking, to beat your partner at this game.

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

Find some examples of pairs of numbers such that their sum is a factor of their product. eg. 4 + 12 = 16 and 4 × 12 = 48 and 16 is a factor of 48.

An investigation that gives you the opportunity to make and justify predictions.

Here are two kinds of spirals for you to explore. What do you notice?

Think of a number, square it and subtract your starting number. Is the number you’re left with odd or even? How do the images help to explain this?

This challenge, written for the Young Mathematicians' Award, invites you to explore 'centred squares'.

In how many different ways can you break up a stick of 7 interlocking cubes? Now try with a stick of 8 cubes and a stick of 6 cubes.

We can arrange dots in a similar way to the 5 on a dice and they usually sit quite well into a rectangular shape. How many altogether in this 3 by 5? What happens for other sizes?

While we were sorting some papers we found 3 strange sheets which seemed to come from small books but there were page numbers at the foot of each page. Did the pages come from the same book?

In this game for two players, the idea is to take it in turns to choose 1, 3, 5 or 7. The winner is the first to make the total 37.

Polygonal numbers are those that are arranged in shapes as they enlarge. Explore the polygonal numbers drawn here.

Got It game for an adult and child. How can you play so that you know you will always win?

Watch this animation. What do you notice? What happens when you try more or fewer cubes in a bundle?

Surprise your friends with this magic square trick.

Investigate the different ways that fifteen schools could have given money in a charity fundraiser.

Can you find all the ways to get 15 at the top of this triangle of numbers? Many opportunities to work in different ways.

Find a route from the outside to the inside of this square, stepping on as many tiles as possible.

These tasks give learners chance to generalise, which involves identifying an underlying structure.

Are these statements relating to odd and even numbers always true, sometimes true or never true?