What happens when you round these three-digit numbers to the nearest 100?

In this calculation, the box represents a missing digit. What could the digit be? What would the solution be in each case?

Sweets are given out to party-goers in a particular way. Investigate the total number of sweets received by people sitting in different positions.

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

Frances and Rishi were given a bag of lollies. They shared them out evenly and had one left over. How many lollies could there have been in the bag?

What happens when you round these numbers to the nearest whole number?

Ben and his mum are planting garlic. Use the interactivity to help you find out how many cloves of garlic they might have had.

Try adding together the dates of all the days in one week. Now multiply the first date by 7 and add 21. Can you explain what happens?

Use two dice to generate two numbers with one decimal place. What happens when you round these numbers to the nearest whole number?

Can you find all the ways to get 15 at the top of this triangle of numbers? Many opportunities to work in different ways.

This challenge is about finding the difference between numbers which have the same tens digit.

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

This challenge, written for the Young Mathematicians' Award, invites you to explore 'centred squares'.

Two children made up a game as they walked along the garden paths. Can you find out their scores? Can you find some paths of your own?

In a Magic Square all the rows, columns and diagonals add to the 'Magic Constant'. How would you change the magic constant of this square?

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

This task follows on from Build it Up and takes the ideas into three dimensions!

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Tom and Ben visited Numberland. Use the maps to work out the number of points each of their routes scores.

An investigation that gives you the opportunity to make and justify predictions.

Try out this number trick. What happens with different starting numbers? What do you notice?

Polygonal numbers are those that are arranged in shapes as they enlarge. Explore the polygonal numbers drawn here.

We can arrange dots in a similar way to the 5 on a dice and they usually sit quite well into a rectangular shape. How many altogether in this 3 by 5? What happens for other sizes?

What can you say about these shapes? This problem challenges you to create shapes with different areas and perimeters.

Can you make dice stairs using the rules stated? How do you know you have all the possible stairs?

These squares have been made from Cuisenaire rods. Can you describe the pattern? What would the next square look like?

In how many different ways can you break up a stick of 7 interlocking cubes? Now try with a stick of 8 cubes and a stick of 6 cubes.

Find the sum of all three-digit numbers each of whose digits is odd.

Compare the numbers of particular tiles in one or all of these three designs, inspired by the floor tiles of a church in Cambridge.

How many different journeys could you make if you were going to visit four stations in this network? How about if there were five stations? Can you predict the number of journeys for seven stations?

What happens if you join every second point on this circle? How about every third point? Try with different steps and see if you can predict what will happen.

Watch this animation. What do you notice? What happens when you try more or fewer cubes in a bundle?

This challenge encourages you to explore dividing a three-digit number by a single-digit number.

Can you dissect an equilateral triangle into 6 smaller ones? What number of smaller equilateral triangles is it NOT possible to dissect a larger equilateral triangle into?

Put the numbers 1, 2, 3, 4, 5, 6 into the squares so that the numbers on each circle add up to the same amount. Can you find the rule for giving another set of six numbers?

How can you arrange these 10 matches in four piles so that when you move one match from three of the piles into the fourth, you end up with the same arrangement?

Can you continue this pattern of triangles and begin to predict how many sticks are used for each new "layer"?

While we were sorting some papers we found 3 strange sheets which seemed to come from small books but there were page numbers at the foot of each page. Did the pages come from the same book?

This activity involves rounding four-digit numbers to the nearest thousand.

Take a look at the video of this trick. Can you perform it yourself? Why is this maths and not magic?

Watch the video of Fran re-ordering these number cards. What do you notice? Try it for yourself. What happens?

If there are 3 squares in the ring, can you place three different numbers in them so that their differences are odd? Try with different numbers of squares around the ring. What do you notice?

It starts quite simple but great opportunities for number discoveries and patterns!

This problem challenges you to find out how many odd numbers there are between pairs of numbers. Can you find a pair of numbers that has four odds between them?

This challenge asks you to imagine a snake coiling on itself.

In this game for two players, the idea is to take it in turns to choose 1, 3, 5 or 7. The winner is the first to make the total 37.

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

Strike it Out game for an adult and child. Can you stop your partner from being able to go?