Watch the video of Fran re-ordering these number cards. What do you notice? Try it for yourself. What happens?

This problem challenges you to find out how many odd numbers there are between pairs of numbers. Can you find a pair of numbers that has four odds between them?

Florence, Ethan and Alma have each added together two 'next-door' numbers. What is the same about their answers?

If there are 3 squares in the ring, can you place three different numbers in them so that their differences are odd? Try with different numbers of squares around the ring. What do you notice?

Ben and his mum are planting garlic. Use the interactivity to help you find out how many cloves of garlic they might have had.

Benâ€™s class were cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

In this calculation, the box represents a missing digit. What could the digit be? What would the solution be in each case?

Frances and Rishi were given a bag of lollies. They shared them out evenly and had one left over. How many lollies could there have been in the bag?

Take a look at the video of this trick. Can you perform it yourself? Why is this maths and not magic?

Sweets are given out to party-goers in a particular way. Investigate the total number of sweets received by people sitting in different positions.

This challenge, written for the Young Mathematicians' Award, invites you to explore 'centred squares'.

This challenge is about finding the difference between numbers which have the same tens digit.

What happens when you round these three-digit numbers to the nearest 100?

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

Use the interactivity to investigate what kinds of triangles can be drawn on peg boards with different numbers of pegs.

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

Find out what a "fault-free" rectangle is and try to make some of your own.

An investigation that gives you the opportunity to make and justify predictions.

Can you put the numbers 1-5 in the V shape so that both 'arms' have the same total?

Polygonal numbers are those that are arranged in shapes as they enlarge. Explore the polygonal numbers drawn here.

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

In this game for two players, the idea is to take it in turns to choose 1, 3, 5 or 7. The winner is the first to make the total 37.

What can you say about these shapes? This problem challenges you to create shapes with different areas and perimeters.

Two children made up a game as they walked along the garden paths. Can you find out their scores? Can you find some paths of your own?

Tom and Ben visited Numberland. Use the maps to work out the number of points each of their routes scores.

We can arrange dots in a similar way to the 5 on a dice and they usually sit quite well into a rectangular shape. How many altogether in this 3 by 5? What happens for other sizes?

In how many different ways can you break up a stick of 7 interlocking cubes? Now try with a stick of 8 cubes and a stick of 6 cubes.

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

This task follows on from Build it Up and takes the ideas into three dimensions!

Can you make dice stairs using the rules stated? How do you know you have all the possible stairs?

Watch this film carefully. Can you find a general rule for explaining when the dot will be this same distance from the horizontal axis?

Find a route from the outside to the inside of this square, stepping on as many tiles as possible.

Are these statements relating to odd and even numbers always true, sometimes true or never true?

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

Can you find all the ways to get 15 at the top of this triangle of numbers? Many opportunities to work in different ways.

Try adding together the dates of all the days in one week. Now multiply the first date by 7 and add 21. Can you explain what happens?

Can you continue this pattern of triangles and begin to predict how many sticks are used for each new "layer"?

In a Magic Square all the rows, columns and diagonals add to the 'Magic Constant'. How would you change the magic constant of this square?

While we were sorting some papers we found 3 strange sheets which seemed to come from small books but there were page numbers at the foot of each page. Did the pages come from the same book?

What happens if you join every second point on this circle? How about every third point? Try with different steps and see if you can predict what will happen.

Got It game for an adult and child. How can you play so that you know you will always win?

How many different journeys could you make if you were going to visit four stations in this network? How about if there were five stations? Can you predict the number of journeys for seven stations?

Watch this animation. What do you notice? What happens when you try more or fewer cubes in a bundle?

This challenge encourages you to explore dividing a three-digit number by a single-digit number.

This task encourages you to investigate the number of edging pieces and panes in different sized windows.

Are these statements always true, sometimes true or never true?

This challenge asks you to imagine a snake coiling on itself.

Stop the Clock game for an adult and child. How can you make sure you always win this game?

This activity involves rounding four-digit numbers to the nearest thousand.