Investigate the number of points with integer coordinates on circles with centres at the origin for which the square of the radius is a power of 5.

Find a connection between the shape of a special ellipse and an infinite string of nested square roots.

Given that a, b and c are natural numbers show that if sqrt a+sqrt b is rational then it is a natural number. Extend this to 3 variables.

Make and prove a conjecture about the value of the product of the Fibonacci numbers $F_{n+1}F_{n-1}$.

Can you make sense of these three proofs of Pythagoras' Theorem?

A serious but easily readable discussion of proof in mathematics with some amusing stories and some interesting examples.

Is the mean of the squares of two numbers greater than, or less than, the square of their means?

In this article we show that every whole number can be written as a continued fraction of the form k/(1+k/(1+k/...)).

Four identical right angled triangles are drawn on the sides of a square. Two face out, two face in. Why do the four vertices marked with dots lie on one line?

This article discusses how every Pythagorean triple (a, b, c) can be illustrated by a square and an L shape within another square. You are invited to find some triples for yourself.

This shape comprises four semi-circles. What is the relationship between the area of the shaded region and the area of the circle on AB as diameter?

This is the second article on right-angled triangles whose edge lengths are whole numbers.

The first of two articles on Pythagorean Triples which asks how many right angled triangles can you find with the lengths of each side exactly a whole number measurement. Try it!

An equilateral triangle is constructed on BC. A line QD is drawn, where Q is the midpoint of AC. Prove that AB // QD.

Prove that if a is a natural number and the square root of a is rational, then it is a square number (an integer n^2 for some integer n.)

Three equilateral triangles ABC, AYX and XZB are drawn with the point X a moveable point on AB. The points P, Q and R are the centres of the three triangles. What can you say about triangle PQR?

If I tell you two sides of a right-angled triangle, you can easily work out the third. But what if the angle between the two sides is not a right angle?

It is impossible to trisect an angle using only ruler and compasses but it can be done using a carpenter's square.

Three points A, B and C lie in this order on a line, and P is any point in the plane. Use the Cosine Rule to prove the following statement.

The twelve edge totals of a standard six-sided die are distributed symmetrically. Will the same symmetry emerge with a dodecahedral die?

Starting with one of the mini-challenges, how many of the other mini-challenges will you invent for yourself?

What can you say about the lengths of the sides of a quadrilateral whose vertices are on a unit circle?

A point moves around inside a rectangle. What are the least and the greatest values of the sum of the squares of the distances from the vertices?

Imagine two identical cylindrical pipes meeting at right angles and think about the shape of the space which belongs to both pipes. Early Chinese mathematicians call this shape the mouhefanggai.

This follows up the 'magic Squares for Special Occasions' article which tells you you to create a 4by4 magicsquare with a special date on the top line using no negative numbers and no repeats.

I am exactly n times my daughter's age. In m years I shall be ... How old am I?

Fractional calculus is a generalisation of ordinary calculus where you can differentiate n times when n is not a whole number.

In this 7-sandwich: 7 1 3 1 6 4 3 5 7 2 4 6 2 5 there are 7 numbers between the 7s, 6 between the 6s etc. The article shows which values of n can make n-sandwiches and which cannot.

Which is the biggest and which the smallest of $2000^{2002}, 2001^{2001} \text{and } 2002^{2000}$?

Patterns that repeat in a line are strangely interesting. How many types are there and how do you tell one type from another?

Show that x = 1 is a solution of the equation x^(3/2) - 8x^(-3/2) = 7 and find all other solutions.

The sum of any two of the numbers 2, 34 and 47 is a perfect square. Choose three square numbers and find sets of three integers with this property. Generalise to four integers.

Professor Korner has generously supported school mathematics for more than 30 years and has been a good friend to NRICH since it started.

To find the integral of a polynomial, evaluate it at some special points and add multiples of these values.

Find all positive integers a and b for which the two equations: x^2-ax+b = 0 and x^2-bx+a = 0 both have positive integer solutions.

What is the largest number of intersection points that a triangle and a quadrilateral can have?

Semicircles are drawn on the sides of a rectangle. Prove that the sum of the areas of the four crescents is equal to the area of the rectangle.

ABCD is a square. P is the midpoint of AB and is joined to C. A line from D perpendicular to PC meets the line at the point Q. Prove AQ = AD.

When is it impossible to make number sandwiches?

Can you make sense of the three methods to work out the area of the kite in the square?

Construct two equilateral triangles on a straight line. There are two lengths that look the same - can you prove it?

A introduction to how patterns can be deceiving, and what is and is not a proof.

L triominoes can fit together to make larger versions of themselves. Is every size possible to make in this way?

Explore what happens when you draw graphs of quadratic equations with coefficients based on a geometric sequence.

Draw some quadrilaterals on a 9-point circle and work out the angles. Is there a theorem?

Do you have enough information to work out the area of the shaded quadrilateral?

Have a go at being mathematically negative, by negating these statements.