Investigate the number of points with integer coordinates on circles with centres at the origin for which the square of the radius is a power of 5.

Given that a, b and c are natural numbers show that if sqrt a+sqrt b is rational then it is a natural number. Extend this to 3 variables.

Make and prove a conjecture about the value of the product of the Fibonacci numbers $F_{n+1}F_{n-1}$.

If I tell you two sides of a right-angled triangle, you can easily work out the third. But what if the angle between the two sides is not a right angle?

Three equilateral triangles ABC, AYX and XZB are drawn with the point X a moveable point on AB. The points P, Q and R are the centres of the three triangles. What can you say about triangle PQR?

The twelve edge totals of a standard six-sided die are distributed symmetrically. Will the same symmetry emerge with a dodecahedral die?

Starting with one of the mini-challenges, how many of the other mini-challenges will you invent for yourself?

Find a connection between the shape of a special ellipse and an infinite string of nested square roots.

Find all real solutions of the equation (x^2-7x+11)^(x^2-11x+30) = 1.

A point moves around inside a rectangle. What are the least and the greatest values of the sum of the squares of the distances from the vertices?

This article discusses how every Pythagorean triple (a, b, c) can be illustrated by a square and an L shape within another square. You are invited to find some triples for yourself.

Which is the biggest and which the smallest of $2000^{2002}, 2001^{2001} \text{and } 2002^{2000}$?

Is the mean of the squares of two numbers greater than, or less than, the square of their means?

A serious but easily readable discussion of proof in mathematics with some amusing stories and some interesting examples.

If for any triangle ABC tan(A - B) + tan(B - C) + tan(C - A) = 0 what can you say about the triangle?

In this article we show that every whole number can be written as a continued fraction of the form k/(1+k/(1+k/...)).

Can you correctly order the steps in the proof of the formula for the sum of the first n terms in a geometric sequence?

This is an interactivity in which you have to sort the steps in the completion of the square into the correct order to prove the formula for the solutions of quadratic equations.

Investigate the sequences obtained by starting with any positive 2 digit number (10a+b) and repeatedly using the rule 10a+b maps to 10b-a to get the next number in the sequence.

In this 7-sandwich: 7 1 3 1 6 4 3 5 7 2 4 6 2 5 there are 7 numbers between the 7s, 6 between the 6s etc. The article shows which values of n can make n-sandwiches and which cannot.

Which of these triangular jigsaws are impossible to finish?

An article about the strategy for playing The Triangle Game which appears on the NRICH site. It contains a simple lemma about labelling a grid of equilateral triangles within a triangular frame.

The sum of any two of the numbers 2, 34 and 47 is a perfect square. Choose three square numbers and find sets of three integers with this property. Generalise to four integers.

Fractional calculus is a generalisation of ordinary calculus where you can differentiate n times when n is not a whole number.

A, B & C own a half, a third and a sixth of a coin collection. Each grab some coins, return some, then share equally what they had put back, finishing with their own share. How rich are they?

If you think that mathematical proof is really clearcut and universal then you should read this article.

An inequality involving integrals of squares of functions.

With n people anywhere in a field each shoots a water pistol at the nearest person. In general who gets wet? What difference does it make if n is odd or even?

Given any two polynomials in a single variable it is always possible to eliminate the variable and obtain a formula showing the relationship between the two polynomials. Try this one.

Some diagrammatic 'proofs' of algebraic identities and inequalities.

Take any two numbers between 0 and 1. Prove that the sum of the numbers is always less than one plus their product?

Explore the continued fraction: 2+3/(2+3/(2+3/2+...)) What do you notice when successive terms are taken? What happens to the terms if the fraction goes on indefinitely?

Kyle and his teacher disagree about his test score - who is right?

To find the integral of a polynomial, evaluate it at some special points and add multiples of these values.

Professor Korner has generously supported school mathematics for more than 30 years and has been a good friend to NRICH since it started.

Can you rearrange the cards to make a series of correct mathematical statements?

Sort these mathematical propositions into a series of 8 correct statements.

Can you work out where the blue-and-red brick roads end?

Given that u>0 and v>0 find the smallest possible value of 1/u + 1/v given that u + v = 5 by different methods.

Explore a number pattern which has the same symmetries in different bases.

Show that for natural numbers x and y if x/y > 1 then x/y>(x+1)/(y+1}>1. Hence prove that the product for i=1 to n of [(2i)/(2i-1)] tends to infinity as n tends to infinity.

Prove that in every tetrahedron there is a vertex such that the three edges meeting there have lengths which could be the sides of a triangle.

Given a set of points (x,y) with distinct x values, find a polynomial that goes through all of them, then prove some results about the existence and uniqueness of these polynomials.

This article stems from research on the teaching of proof and offers guidance on how to move learners from focussing on experimental arguments to mathematical arguments and deductive reasoning.