The twelve edge totals of a standard six-sided die are distributed symmetrically. Will the same symmetry emerge with a dodecahedral die?

If I tell you two sides of a right-angled triangle, you can easily work out the third. But what if the angle between the two sides is not a right angle?

If you think that mathematical proof is really clearcut and universal then you should read this article.

An article about the strategy for playing The Triangle Game which appears on the NRICH site. It contains a simple lemma about labelling a grid of equilateral triangles within a triangular frame.

Is the mean of the squares of two numbers greater than, or less than, the square of their means?

The sum of any two of the numbers 2, 34 and 47 is a perfect square. Choose three square numbers and find sets of three integers with this property. Generalise to four integers.

Have a go at being mathematically negative, by negating these statements.

This article stems from research on the teaching of proof and offers guidance on how to move learners from focussing on experimental arguments to mathematical arguments and deductive reasoning.

Investigate the number of points with integer coordinates on circles with centres at the origin for which the square of the radius is a power of 5.

To find the integral of a polynomial, evaluate it at some special points and add multiples of these values.

Sort these mathematical propositions into a series of 8 correct statements.

This follows up the 'magic Squares for Special Occasions' article which tells you you to create a 4by4 magicsquare with a special date on the top line using no negative numbers and no repeats.

Investigate the sequences obtained by starting with any positive 2 digit number (10a+b) and repeatedly using the rule 10a+b maps to 10b-a to get the next number in the sequence.

Toni Beardon has chosen this article introducing a rich area for practical exploration and discovery in 3D geometry

Given a set of points (x,y) with distinct x values, find a polynomial that goes through all of them, then prove some results about the existence and uniqueness of these polynomials.

A point moves around inside a rectangle. What are the least and the greatest values of the sum of the squares of the distances from the vertices?

Can you rearrange the cards to make a series of correct mathematical statements?

If for any triangle ABC tan(A - B) + tan(B - C) + tan(C - A) = 0 what can you say about the triangle?

This article discusses how every Pythagorean triple (a, b, c) can be illustrated by a square and an L shape within another square. You are invited to find some triples for yourself.

A, B & C own a half, a third and a sixth of a coin collection. Each grab some coins, return some, then share equally what they had put back, finishing with their own share. How rich are they?

Professor Korner has generously supported school mathematics for more than 30 years and has been a good friend to NRICH since it started.

Can you work through these direct proofs, using our interactive proof sorters?

Which of these triangular jigsaws are impossible to finish?

We continue the discussion given in Euclid's Algorithm I, and here we shall discover when an equation of the form ax+by=c has no solutions, and when it has infinitely many solutions.

In this 7-sandwich: 7 1 3 1 6 4 3 5 7 2 4 6 2 5 there are 7 numbers between the 7s, 6 between the 6s etc. The article shows which values of n can make n-sandwiches and which cannot.

Prove that in every tetrahedron there is a vertex such that the three edges meeting there have lengths which could be the sides of a triangle.

This article invites you to get familiar with a strategic game called "sprouts". The game is simple enough for younger children to understand, and has also provided experienced mathematicians with. . . .

Eulerian and Hamiltonian circuits are defined with some simple examples and a couple of puzzles to illustrate Hamiltonian circuits.

Find a connection between the shape of a special ellipse and an infinite string of nested square roots.

Can you find the value of this function involving algebraic fractions for x=2000?

Given any two polynomials in a single variable it is always possible to eliminate the variable and obtain a formula showing the relationship between the two polynomials. Try this one.

What is the largest number of intersection points that a triangle and a quadrilateral can have?

Explore the continued fraction: 2+3/(2+3/(2+3/2+...)) What do you notice when successive terms are taken? What happens to the terms if the fraction goes on indefinitely?

Take any two numbers between 0 and 1. Prove that the sum of the numbers is always less than one plus their product?

If x + y = -1 find the largest value of xy by coordinate geometry, by calculus and by algebra.

Which is the biggest and which the smallest of $2000^{2002}, 2001^{2001} \text{and } 2002^{2000}$?

Show that x = 1 is a solution of the equation x^(3/2) - 8x^(-3/2) = 7 and find all other solutions.

Find the positive integer solutions of the equation (1+1/a)(1+1/b)(1+1/c) = 2

Find all real solutions of the equation (x^2-7x+11)^(x^2-11x+30) = 1.

Here is a proof of Euler's formula in the plane and on a sphere together with projects to explore cases of the formula for a polygon with holes, for the torus and other solids with holes and the. . . .

Some diagrammatic 'proofs' of algebraic identities and inequalities.

Fractional calculus is a generalisation of ordinary calculus where you can differentiate n times when n is not a whole number.

This article looks at knight's moves on a chess board and introduces you to the idea of vectors and vector addition.

Take a complicated fraction with the product of five quartics top and bottom and reduce this to a whole number. This is a numerical example involving some clever algebra.

Some puzzles requiring no knowledge of knot theory, just a careful inspection of the patterns. A glimpse of the classification of knots and a little about prime knots, crossing numbers and. . . .