Make and prove a conjecture about the value of the product of the Fibonacci numbers $F_{n+1}F_{n-1}$.

Sort these mathematical propositions into a series of 8 correct statements.

Investigate the sequences obtained by starting with any positive 2 digit number (10a+b) and repeatedly using the rule 10a+b maps to 10b-a to get the next number in the sequence.

Fractional calculus is a generalisation of ordinary calculus where you can differentiate n times when n is not a whole number.

Starting with one of the mini-challenges, how many of the other mini-challenges will you invent for yourself?

An inequality involving integrals of squares of functions.

Generalise the sum of a GP by using derivatives to make the coefficients into powers of the natural numbers.

A serious but easily readable discussion of proof in mathematics with some amusing stories and some interesting examples.

This is an interactivity in which you have to sort the steps in the completion of the square into the correct order to prove the formula for the solutions of quadratic equations.

An account of methods for finding whether or not a number can be written as the sum of two or more squares or as the sum of two or more cubes.

A introduction to how patterns can be deceiving, and what is and is not a proof.

When if ever do you get the right answer if you add two fractions by adding the numerators and adding the denominators?

With n people anywhere in a field each shoots a water pistol at the nearest person. In general who gets wet? What difference does it make if n is odd or even?

Show that x = 1 is a solution of the equation x^(3/2) - 8x^(-3/2) = 7 and find all other solutions.

A polite number can be written as the sum of two or more consecutive positive integers. Find the consecutive sums giving the polite numbers 544 and 424. What characterizes impolite numbers?

Find a connection between the shape of a special ellipse and an infinite string of nested square roots.

Given a set of points (x,y) with distinct x values, find a polynomial that goes through all of them, then prove some results about the existence and uniqueness of these polynomials.

Can you correctly order the steps in the proof of the formula for the sum of the first n terms in a geometric sequence?

If for any triangle ABC tan(A - B) + tan(B - C) + tan(C - A) = 0 what can you say about the triangle?

Can you work out where the blue-and-red brick roads end?

Given that a, b and c are natural numbers show that if sqrt a+sqrt b is rational then it is a natural number. Extend this to 3 variables.

By proving these particular identities, prove the existence of general cases.

Explore the continued fraction: 2+3/(2+3/(2+3/2+...)) What do you notice when successive terms are taken? What happens to the terms if the fraction goes on indefinitely?

Find the positive integer solutions of the equation (1+1/a)(1+1/b)(1+1/c) = 2

Given that u>0 and v>0 find the smallest possible value of 1/u + 1/v given that u + v = 5 by different methods.

This article discusses how every Pythagorean triple (a, b, c) can be illustrated by a square and an L shape within another square. You are invited to find some triples for yourself.

Given any two polynomials in a single variable it is always possible to eliminate the variable and obtain a formula showing the relationship between the two polynomials. Try this one.

Can you work through these direct proofs, using our interactive proof sorters?

By considering powers of (1+x), show that the sum of the squares of the binomial coefficients from 0 to n is 2nCn

Some puzzles requiring no knowledge of knot theory, just a careful inspection of the patterns. A glimpse of the classification of knots and a little about prime knots, crossing numbers and. . . .

Can you rearrange the cards to make a series of correct mathematical statements?

Professor Korner has generously supported school mathematics for more than 30 years and has been a good friend to NRICH since it started.

To find the integral of a polynomial, evaluate it at some special points and add multiples of these values.

Eulerian and Hamiltonian circuits are defined with some simple examples and a couple of puzzles to illustrate Hamiltonian circuits.

Investigate the number of points with integer coordinates on circles with centres at the origin for which the square of the radius is a power of 5.

Suppose A always beats B and B always beats C, then would you expect A to beat C? Not always! What seems obvious is not always true. Results always need to be proved in mathematics.

If x + y = -1 find the largest value of xy by coordinate geometry, by calculus and by algebra.

Which is the biggest and which the smallest of $2000^{2002}, 2001^{2001} \text{and } 2002^{2000}$?

The nth term of a sequence is given by the formula n^3 + 11n . Find the first four terms of the sequence given by this formula and the first term of the sequence which is bigger than one million. . . .

The sum of any two of the numbers 2, 34 and 47 is a perfect square. Choose three square numbers and find sets of three integers with this property. Generalise to four integers.

Find all positive integers a and b for which the two equations: x^2-ax+b = 0 and x^2-bx+a = 0 both have positive integer solutions.

Can you find the value of this function involving algebraic fractions for x=2000?

Take a complicated fraction with the product of five quartics top and bottom and reduce this to a whole number. This is a numerical example involving some clever algebra.

Put the steps of this proof in order to find the formula for the sum of an arithmetic sequence