Given that a, b and c are natural numbers show that if sqrt a+sqrt b is rational then it is a natural number. Extend this to 3 variables.

Starting with one of the mini-challenges, how many of the other mini-challenges will you invent for yourself?

Make and prove a conjecture about the value of the product of the Fibonacci numbers $F_{n+1}F_{n-1}$.

Prove that if a is a natural number and the square root of a is rational, then it is a square number (an integer n^2 for some integer n.)

Pick a square within a multiplication square and add the numbers on each diagonal. What do you notice?

Can you work out where the blue-and-red brick roads end?

A serious but easily readable discussion of proof in mathematics with some amusing stories and some interesting examples.

A, B & C own a half, a third and a sixth of a coin collection. Each grab some coins, return some, then share equally what they had put back, finishing with their own share. How rich are they?

Which of these triangular jigsaws are impossible to finish?

Investigate the sequences obtained by starting with any positive 2 digit number (10a+b) and repeatedly using the rule 10a+b maps to 10b-a to get the next number in the sequence.

Janine noticed, while studying some cube numbers, that if you take three consecutive whole numbers and multiply them together and then add the middle number of the three, you get the middle number. . . .

This is an interactivity in which you have to sort the steps in the completion of the square into the correct order to prove the formula for the solutions of quadratic equations.

In this article we show that every whole number can be written as a continued fraction of the form k/(1+k/(1+k/...)).

Given any two polynomials in a single variable it is always possible to eliminate the variable and obtain a formula showing the relationship between the two polynomials. Try this one.

Can you rearrange the cards to make a series of correct mathematical statements?

What is the largest number of intersection points that a triangle and a quadrilateral can have?

Is the mean of the squares of two numbers greater than, or less than, the square of their means?

Show that x = 1 is a solution of the equation x^(3/2) - 8x^(-3/2) = 7 and find all other solutions.

The sum of any two of the numbers 2, 34 and 47 is a perfect square. Choose three square numbers and find sets of three integers with this property. Generalise to four integers.

Find a connection between the shape of a special ellipse and an infinite string of nested square roots.

To find the integral of a polynomial, evaluate it at some special points and add multiples of these values.

Find all positive integers a and b for which the two equations: x^2-ax+b = 0 and x^2-bx+a = 0 both have positive integer solutions.

Prove that, given any three parallel lines, an equilateral triangle always exists with one vertex on each of the three lines.

Investigate the number of points with integer coordinates on circles with centres at the origin for which the square of the radius is a power of 5.

When if ever do you get the right answer if you add two fractions by adding the numerators and adding the denominators?

In this 7-sandwich: 7 1 3 1 6 4 3 5 7 2 4 6 2 5 there are 7 numbers between the 7s, 6 between the 6s etc. The article shows which values of n can make n-sandwiches and which cannot.

An article about the strategy for playing The Triangle Game which appears on the NRICH site. It contains a simple lemma about labelling a grid of equilateral triangles within a triangular frame.

We continue the discussion given in Euclid's Algorithm I, and here we shall discover when an equation of the form ax+by=c has no solutions, and when it has infinitely many solutions.

A introduction to how patterns can be deceiving, and what is and is not a proof.

When is it impossible to make number sandwiches?

Prove that in every tetrahedron there is a vertex such that the three edges meeting there have lengths which could be the sides of a triangle.

Prove that the internal angle bisectors of a triangle will never be perpendicular to each other.

Try to solve this very difficult problem and then study our two suggested solutions. How would you use your knowledge to try to solve variants on the original problem?

If I tell you two sides of a right-angled triangle, you can easily work out the third. But what if the angle between the two sides is not a right angle?

Construct two equilateral triangles on a straight line. There are two lengths that look the same - can you prove it?

The sums of the squares of three related numbers is also a perfect square - can you explain why?

Clearly if a, b and c are the lengths of the sides of an equilateral triangle then a^2 + b^2 + c^2 = ab + bc + ca. Is the converse true?

With n people anywhere in a field each shoots a water pistol at the nearest person. In general who gets wet? What difference does it make if n is odd or even?

Explore a number pattern which has the same symmetries in different bases.

Show that for natural numbers x and y if x/y > 1 then x/y>(x+1)/(y+1}>1. Hence prove that the product for i=1 to n of [(2i)/(2i-1)] tends to infinity as n tends to infinity.

Eulerian and Hamiltonian circuits are defined with some simple examples and a couple of puzzles to illustrate Hamiltonian circuits.

The country Sixtania prints postage stamps with only three values 6 lucres, 10 lucres and 15 lucres (where the currency is in lucres).Which values cannot be made up with combinations of these postage. . . .

Given that u>0 and v>0 find the smallest possible value of 1/u + 1/v given that u + v = 5 by different methods.