Resources tagged with: Mathematical reasoning & proof

Filter by: Content type:
Age range:
Challenge level:

There are 172 results

Broad Topics > Using, Applying and Reasoning about Mathematics > Mathematical reasoning & proof

problem icon

Polynomial Relations

Age 16 to 18 Challenge Level:

Given any two polynomials in a single variable it is always possible to eliminate the variable and obtain a formula showing the relationship between the two polynomials. Try this one.

problem icon

Pair Squares

Age 16 to 18 Challenge Level:

The sum of any two of the numbers 2, 34 and 47 is a perfect square. Choose three square numbers and find sets of three integers with this property. Generalise to four integers.

problem icon

Mechanical Integration

Age 16 to 18 Challenge Level:

To find the integral of a polynomial, evaluate it at some special points and add multiples of these values.

problem icon

Multiplication Square

Age 14 to 16 Challenge Level:

Pick a square within a multiplication square and add the numbers on each diagonal. What do you notice?

problem icon

Iffy Logic

Age 14 to 18 Challenge Level:

Can you rearrange the cards to make a series of correct mathematical statements?

problem icon

Unit Interval

Age 14 to 18 Challenge Level:

Take any two numbers between 0 and 1. Prove that the sum of the numbers is always less than one plus their product?

problem icon

Diverging

Age 16 to 18 Challenge Level:

Show that for natural numbers x and y if x/y > 1 then x/y>(x+1)/(y+1}>1. Hence prove that the product for i=1 to n of [(2i)/(2i-1)] tends to infinity as n tends to infinity.

problem icon

Leonardo's Problem

Age 14 to 18 Challenge Level:

A, B & C own a half, a third and a sixth of a coin collection. Each grab some coins, return some, then share equally what they had put back, finishing with their own share. How rich are they?

problem icon

Triangular Intersection

Age 14 to 16 Short Challenge Level:

What is the largest number of intersection points that a triangle and a quadrilateral can have?

problem icon

Interpolating Polynomials

Age 16 to 18 Challenge Level:

Given a set of points (x,y) with distinct x values, find a polynomial that goes through all of them, then prove some results about the existence and uniqueness of these polynomials.

problem icon

Look Before You Leap

Age 16 to 18 Challenge Level:

Relate these algebraic expressions to geometrical diagrams.

problem icon

AMGM

Age 14 to 16 Challenge Level:

Can you use the diagram to prove the AM-GM inequality?

problem icon

More Number Sandwiches

Age 11 to 16 Challenge Level:

When is it impossible to make number sandwiches?

problem icon

Where Do We Get Our Feet Wet?

Age 16 to 18

Professor Korner has generously supported school mathematics for more than 30 years and has been a good friend to NRICH since it started.

problem icon

To Prove or Not to Prove

Age 14 to 18

A serious but easily readable discussion of proof in mathematics with some amusing stories and some interesting examples.

problem icon

Doodles

Age 14 to 16 Challenge Level:

Draw a 'doodle' - a closed intersecting curve drawn without taking pencil from paper. What can you prove about the intersections?

problem icon

Sperner's Lemma

Age 16 to 18

An article about the strategy for playing The Triangle Game which appears on the NRICH site. It contains a simple lemma about labelling a grid of equilateral triangles within a triangular frame.

problem icon

And So on - and on -and On

Age 16 to 18 Challenge Level:

Can you find the value of this function involving algebraic fractions for x=2000?

problem icon

Picturing Pythagorean Triples

Age 14 to 18

This article discusses how every Pythagorean triple (a, b, c) can be illustrated by a square and an L shape within another square. You are invited to find some triples for yourself.

problem icon

Geometry and Gravity 2

Age 11 to 18

This is the second of two articles and discusses problems relating to the curvature of space, shortest distances on surfaces, triangulations of surfaces and representation by graphs.

problem icon

Thousand Words

Age 16 to 18 Challenge Level:

Here the diagram says it all. Can you find the diagram?

problem icon

Transitivity

Age 16 to 18

Suppose A always beats B and B always beats C, then would you expect A to beat C? Not always! What seems obvious is not always true. Results always need to be proved in mathematics.

problem icon

Proof: A Brief Historical Survey

Age 14 to 18

If you think that mathematical proof is really clearcut and universal then you should read this article.

problem icon

Janine's Conjecture

Age 14 to 16 Challenge Level:

Janine noticed, while studying some cube numbers, that if you take three consecutive whole numbers and multiply them together and then add the middle number of the three, you get the middle number. . . .

problem icon

Perfectly Square

Age 14 to 16 Challenge Level:

The sums of the squares of three related numbers is also a perfect square - can you explain why?

problem icon

Exhaustion

Age 16 to 18 Challenge Level:

Find the positive integer solutions of the equation (1+1/a)(1+1/b)(1+1/c) = 2

problem icon

Natural Sum

Age 14 to 16 Challenge Level:

The picture illustrates the sum 1 + 2 + 3 + 4 = (4 x 5)/2. Prove the general formula for the sum of the first n natural numbers and the formula for the sum of the cubes of the first n natural. . . .

problem icon

Pareq Exists

Age 14 to 16 Challenge Level:

Prove that, given any three parallel lines, an equilateral triangle always exists with one vertex on each of the three lines.

problem icon

Euclid's Algorithm II

Age 16 to 18

We continue the discussion given in Euclid's Algorithm I, and here we shall discover when an equation of the form ax+by=c has no solutions, and when it has infinitely many solutions.

problem icon

Impossible Sandwiches

Age 11 to 18

In this 7-sandwich: 7 1 3 1 6 4 3 5 7 2 4 6 2 5 there are 7 numbers between the 7s, 6 between the 6s etc. The article shows which values of n can make n-sandwiches and which cannot.

problem icon

Binomial

Age 16 to 18 Challenge Level:

By considering powers of (1+x), show that the sum of the squares of the binomial coefficients from 0 to n is 2nCn

problem icon

Cosines Rule

Age 14 to 16 Challenge Level:

Three points A, B and C lie in this order on a line, and P is any point in the plane. Use the Cosine Rule to prove the following statement.

problem icon

Three Ways

Age 16 to 18 Challenge Level:

If x + y = -1 find the largest value of xy by coordinate geometry, by calculus and by algebra.

problem icon

The Triangle Game

Age 11 to 16 Challenge Level:

Can you discover whether this is a fair game?

problem icon

Our Ages

Age 14 to 16 Challenge Level:

I am exactly n times my daughter's age. In m years I shall be ... How old am I?

problem icon

The Great Weights Puzzle

Age 14 to 16 Challenge Level:

You have twelve weights, one of which is different from the rest. Using just 3 weighings, can you identify which weight is the odd one out, and whether it is heavier or lighter than the rest?

problem icon

Iff

Age 14 to 18 Challenge Level:

Take a triangular number, multiply it by 8 and add 1. What is special about your answer? Can you prove it?

problem icon

Mind Your Ps and Qs

Age 16 to 18 Short Challenge Level:

Sort these mathematical propositions into a series of 8 correct statements.

problem icon

Direct Logic

Age 16 to 18 Challenge Level:

Can you work through these direct proofs, using our interactive proof sorters?

problem icon

Russian Cubes

Age 14 to 16 Challenge Level:

I want some cubes painted with three blue faces and three red faces. How many different cubes can be painted like that?

problem icon

Proof of Pick's Theorem

Age 16 to 18 Challenge Level:

Follow the hints and prove Pick's Theorem.

problem icon

Rational Roots

Age 16 to 18 Challenge Level:

Given that a, b and c are natural numbers show that if sqrt a+sqrt b is rational then it is a natural number. Extend this to 3 variables.

problem icon

Quadratic Harmony

Age 16 to 18 Challenge Level:

Find all positive integers a and b for which the two equations: x^2-ax+b = 0 and x^2-bx+a = 0 both have positive integer solutions.

problem icon

Dodgy Proofs

Age 16 to 18 Challenge Level:

These proofs are wrong. Can you see why?

problem icon

Advent Calendar 2011 - Secondary

Age 11 to 18 Challenge Level:

Advent Calendar 2011 - a mathematical activity for each day during the run-up to Christmas.

problem icon

Converse

Age 14 to 16 Challenge Level:

Clearly if a, b and c are the lengths of the sides of an equilateral triangle then a^2 + b^2 + c^2 = ab + bc + ca. Is the converse true?

problem icon

More Dicey Decisions

Age 16 to 18 Challenge Level:

The twelve edge totals of a standard six-sided die are distributed symmetrically. Will the same symmetry emerge with a dodecahedral die?

problem icon

A Long Time at the Till

Age 14 to 18 Challenge Level:

Try to solve this very difficult problem and then study our two suggested solutions. How would you use your knowledge to try to solve variants on the original problem?

problem icon

Road Maker

Age 14 to 18 Challenge Level:

Which of these roads will satisfy a Munchkin builder?

problem icon

Tree Graphs

Age 16 to 18 Challenge Level:

A connected graph is a graph in which we can get from any vertex to any other by travelling along the edges. A tree is a connected graph with no closed circuits (or loops. Prove that every tree has. . . .