The nth term of a sequence is given by the formula n^3 + 11n . Find the first four terms of the sequence given by this formula and the first term of the sequence which is bigger than one million. . . .

What can you say about the common difference of an AP where every term is prime?

Peter Zimmerman from Mill Hill County High School in Barnet, London gives a neat proof that: 5^(2n+1) + 11^(2n+1) + 17^(2n+1) is divisible by 33 for every non negative integer n.

An account of methods for finding whether or not a number can be written as the sum of two or more squares or as the sum of two or more cubes.

Peter Zimmerman, a Year 13 student at Mill Hill County High School in Barnet, London wrote this account of modulus arithmetic.

Find the largest integer which divides every member of the following sequence: 1^5-1, 2^5-2, 3^5-3, ... n^5-n.

Find the smallest positive integer N such that N/2 is a perfect cube, N/3 is a perfect fifth power and N/5 is a perfect seventh power.

Prove that if a^2+b^2 is a multiple of 3 then both a and b are multiples of 3.

Caroline and James pick sets of five numbers. Charlie chooses three of them that add together to make a multiple of three. Can they stop him?

The sum of any two of the numbers 2, 34 and 47 is a perfect square. Choose three square numbers and find sets of three integers with this property. Generalise to four integers.

A polite number can be written as the sum of two or more consecutive positive integers. Find the consecutive sums giving the polite numbers 544 and 424. What characterizes impolite numbers?

Find all positive integers a and b for which the two equations: x^2-ax+b = 0 and x^2-bx+a = 0 both have positive integer solutions.

Find all real solutions of the equation (x^2-7x+11)^(x^2-11x+30) = 1.

We only need 7 numbers for modulus (or clock) arithmetic mod 7 including working with fractions. Explore how to divide numbers and write fractions in modulus arithemtic.

Take any prime number greater than 3 , square it and subtract one. Working on the building blocks will help you to explain what is special about your results.

Show that for natural numbers x and y if x/y > 1 then x/y>(x+1)/(y+1}>1. Hence prove that the product for i=1 to n of [(2i)/(2i-1)] tends to infinity as n tends to infinity.

When if ever do you get the right answer if you add two fractions by adding the numerators and adding the denominators?

Given any two polynomials in a single variable it is always possible to eliminate the variable and obtain a formula showing the relationship between the two polynomials. Try this one.

Take a complicated fraction with the product of five quartics top and bottom and reduce this to a whole number. This is a numerical example involving some clever algebra.

Take any two numbers between 0 and 1. Prove that the sum of the numbers is always less than one plus their product?

I am exactly n times my daughter's age. In m years I shall be ... How old am I?

Four jewellers share their stock. Can you work out the relative values of their gems?

How many noughts are at the end of these giant numbers?

Can you convince me of each of the following: If a square number is multiplied by a square number the product is ALWAYS a square number...

Which is the biggest and which the smallest of $2000^{2002}, 2001^{2001} \text{and } 2002^{2000}$?

To find the integral of a polynomial, evaluate it at some special points and add multiples of these values.

A, B & C own a half, a third and a sixth of a coin collection. Each grab some coins, return some, then share equally what they had put back, finishing with their own share. How rich are they?

A point moves around inside a rectangle. What are the least and the greatest values of the sum of the squares of the distances from the vertices?

With n people anywhere in a field each shoots a water pistol at the nearest person. In general who gets wet? What difference does it make if n is odd or even?

The sums of the squares of three related numbers is also a perfect square - can you explain why?

A composite number is one that is neither prime nor 1. Show that 10201 is composite in any base.

Janine noticed, while studying some cube numbers, that if you take three consecutive whole numbers and multiply them together and then add the middle number of the three, you get the middle number. . . .

By considering powers of (1+x), show that the sum of the squares of the binomial coefficients from 0 to n is 2nCn

By proving these particular identities, prove the existence of general cases.

An introduction to some beautiful results of Number Theory (a branch of pure mathematics devoted primarily to the study of the integers and integer-valued functions)

Relate these algebraic expressions to geometrical diagrams.

Show that the arithmetic mean, geometric mean and harmonic mean of a and b can be the lengths of the sides of a right-angles triangle if and only if a = bx^3, where x is the Golden Ratio.

Explore a number pattern which has the same symmetries in different bases.

The problem is how did Archimedes calculate the lengths of the sides of the polygons which needed him to be able to calculate square roots?

Find a connection between the shape of a special ellipse and an infinite string of nested square roots.

If a two digit number has its digits reversed and the smaller of the two numbers is subtracted from the larger, prove the difference can never be prime.

Show that x = 1 is a solution of the equation x^(3/2) - 8x^(-3/2) = 7 and find all other solutions.

This article stems from research on the teaching of proof and offers guidance on how to move learners from focussing on experimental arguments to mathematical arguments and deductive reasoning.

There are 12 identical looking coins, one of which is a fake. The counterfeit coin is of a different weight to the rest. What is the minimum number of weighings needed to locate the fake coin?

Show that if you add 1 to the product of four consecutive numbers the answer is ALWAYS a perfect square.

Given a set of points (x,y) with distinct x values, find a polynomial that goes through all of them, then prove some results about the existence and uniqueness of these polynomials.

The knight's move on a chess board is 2 steps in one direction and one step in the other direction. Prove that a knight cannot visit every square on the board once and only (a tour) on a 2 by n board. . . .