Caroline and James pick sets of five numbers. Charlie chooses three of them that add together to make a multiple of three. Can they stop him?

Prove that if a^2+b^2 is a multiple of 3 then both a and b are multiples of 3.

Peter Zimmerman from Mill Hill County High School in Barnet, London gives a neat proof that: 5^(2n+1) + 11^(2n+1) + 17^(2n+1) is divisible by 33 for every non negative integer n.

The nth term of a sequence is given by the formula n^3 + 11n . Find the first four terms of the sequence given by this formula and the first term of the sequence which is bigger than one million. . . .

The sum of any two of the numbers 2, 34 and 47 is a perfect square. Choose three square numbers and find sets of three integers with this property. Generalise to four integers.

Show that for natural numbers x and y if x/y > 1 then x/y>(x+1)/(y+1}>1. Hence prove that the product for i=1 to n of [(2i)/(2i-1)] tends to infinity as n tends to infinity.

Find all positive integers a and b for which the two equations: x^2-ax+b = 0 and x^2-bx+a = 0 both have positive integer solutions.

We only need 7 numbers for modulus (or clock) arithmetic mod 7 including working with fractions. Explore how to divide numbers and write fractions in modulus arithemtic.

A, B & C own a half, a third and a sixth of a coin collection. Each grab some coins, return some, then share equally what they had put back, finishing with their own share. How rich are they?

Take a complicated fraction with the product of five quartics top and bottom and reduce this to a whole number. This is a numerical example involving some clever algebra.

What can you say about the common difference of an AP where every term is prime?

An account of methods for finding whether or not a number can be written as the sum of two or more squares or as the sum of two or more cubes.

Take any two numbers between 0 and 1. Prove that the sum of the numbers is always less than one plus their product?

The sums of the squares of three related numbers is also a perfect square - can you explain why?

Find the smallest positive integer N such that N/2 is a perfect cube, N/3 is a perfect fifth power and N/5 is a perfect seventh power.

Find the largest integer which divides every member of the following sequence: 1^5-1, 2^5-2, 3^5-3, ... n^5-n.

How many noughts are at the end of these giant numbers?

Given any two polynomials in a single variable it is always possible to eliminate the variable and obtain a formula showing the relationship between the two polynomials. Try this one.

Janine noticed, while studying some cube numbers, that if you take three consecutive whole numbers and multiply them together and then add the middle number of the three, you get the middle number. . . .

A polite number can be written as the sum of two or more consecutive positive integers. Find the consecutive sums giving the polite numbers 544 and 424. What characterizes impolite numbers?

Which is the biggest and which the smallest of $2000^{2002}, 2001^{2001} \text{and } 2002^{2000}$?

If x + y = -1 find the largest value of xy by coordinate geometry, by calculus and by algebra.

I am exactly n times my daughter's age. In m years I shall be ... How old am I?

Is the mean of the squares of two numbers greater than, or less than, the square of their means?

By considering powers of (1+x), show that the sum of the squares of the binomial coefficients from 0 to n is 2nCn

Four jewellers share their stock. Can you work out the relative values of their gems?

What is the largest number of intersection points that a triangle and a quadrilateral can have?

Take any prime number greater than 3 , square it and subtract one. Working on the building blocks will help you to explain what is special about your results.

Show that if you add 1 to the product of four consecutive numbers the answer is ALWAYS a perfect square.

Can you make sense of these three proofs of Pythagoras' Theorem?

When is it impossible to make number sandwiches?

By proving these particular identities, prove the existence of general cases.

Given a set of points (x,y) with distinct x values, find a polynomial that goes through all of them, then prove some results about the existence and uniqueness of these polynomials.

Advent Calendar 2011 - a mathematical activity for each day during the run-up to Christmas.

Starting with one of the mini-challenges, how many of the other mini-challenges will you invent for yourself?

Can you rearrange the cards to make a series of correct mathematical statements?

To find the integral of a polynomial, evaluate it at some special points and add multiples of these values.

You have twelve weights, one of which is different from the rest. Using just 3 weighings, can you identify which weight is the odd one out, and whether it is heavier or lighter than the rest?

Pick a square within a multiplication square and add the numbers on each diagonal. What do you notice?

This article invites you to get familiar with a strategic game called "sprouts". The game is simple enough for younger children to understand, and has also provided experienced mathematicians with. . . .

With n people anywhere in a field each shoots a water pistol at the nearest person. In general who gets wet? What difference does it make if n is odd or even?

Can you convince me of each of the following: If a square number is multiplied by a square number the product is ALWAYS a square number...

Peter Zimmerman, a Year 13 student at Mill Hill County High School in Barnet, London wrote this account of modulus arithmetic.

Prove that if the integer n is divisible by 4 then it can be written as the difference of two squares.

Find all real solutions of the equation (x^2-7x+11)^(x^2-11x+30) = 1.

Relate these algebraic expressions to geometrical diagrams.