Can you correctly order the steps in the proof of the formula for the sum of a geometric series?

This is an interactivity in which you have to sort the steps in the completion of the square into the correct order to prove the formula for the solutions of quadratic equations.

Use this interactivity to sort out the steps of the proof of the formula for the sum of an arithmetic series. The 'thermometer' will tell you how you are doing

Can you work through these direct proofs, using our interactive proof sorters?

What is the largest number of intersection points that a triangle and a quadrilateral can have?

Can you rearrange the cards to make a series of correct mathematical statements?

An article about the strategy for playing The Triangle Game which appears on the NRICH site. It contains a simple lemma about labelling a grid of equilateral triangles within a triangular frame.

Have a go at being mathematically negative, by negating these statements.

Three equilateral triangles ABC, AYX and XZB are drawn with the point X a moveable point on AB. The points P, Q and R are the centres of the three triangles. What can you say about triangle PQR?

Can you see how this picture illustrates the formula for the sum of the first six cube numbers?

Is the mean of the squares of two numbers greater than, or less than, the square of their means?

I am exactly n times my daughter's age. In m years I shall be ... How old am I?

What can you say about the lengths of the sides of a quadrilateral whose vertices are on a unit circle?

An equilateral triangle is constructed on BC. A line QD is drawn, where Q is the midpoint of AC. Prove that AB // QD.

Show that x = 1 is a solution of the equation x^(3/2) - 8x^(-3/2) = 7 and find all other solutions.

Find all positive integers a and b for which the two equations: x^2-ax+b = 0 and x^2-bx+a = 0 both have positive integer solutions.

It is impossible to trisect an angle using only ruler and compasses but it can be done using a carpenter's square.

The sums of the squares of three related numbers is also a perfect square - can you explain why?

The first of two articles on Pythagorean Triples which asks how many right angled triangles can you find with the lengths of each side exactly a whole number measurement. Try it!

This is the second article on right-angled triangles whose edge lengths are whole numbers.

Take any two numbers between 0 and 1. Prove that the sum of the numbers is always less than one plus their product?

This article discusses how every Pythagorean triple (a, b, c) can be illustrated by a square and an L shape within another square. You are invited to find some triples for yourself.

A composite number is one that is neither prime nor 1. Show that 10201 is composite in any base.

Imagine two identical cylindrical pipes meeting at right angles and think about the shape of the space which belongs to both pipes. Early Chinese mathematicians call this shape the mouhefanggai.

An inequality involving integrals of squares of functions.

The picture illustrates the sum 1 + 2 + 3 + 4 = (4 x 5)/2. Prove the general formula for the sum of the first n natural numbers and the formula for the sum of the cubes of the first n natural. . . .

Some diagrammatic 'proofs' of algebraic identities and inequalities.

When is it impossible to make number sandwiches?

Given that u>0 and v>0 find the smallest possible value of 1/u + 1/v given that u + v = 5 by different methods.

Mark a point P inside a closed curve. Is it always possible to find two points that lie on the curve, such that P is the mid point of the line joining these two points?

Prove that in every tetrahedron there is a vertex such that the three edges meeting there have lengths which could be the sides of a triangle.

Make and prove a conjecture about the value of the product of the Fibonacci numbers $F_{n+1}F_{n-1}$.

The nth term of a sequence is given by the formula n^3 + 11n . Find the first four terms of the sequence given by this formula and the first term of the sequence which is bigger than one million. . . .

Clearly if a, b and c are the lengths of the sides of an equilateral triangle then a^2 + b^2 + c^2 = ab + bc + ca. Is the converse true?

Pick a square within a multiplication square and add the numbers on each diagonal. What do you notice?

The sum of any two of the numbers 2, 34 and 47 is a perfect square. Choose three square numbers and find sets of three integers with this property. Generalise to four integers.

Show that if you add 1 to the product of four consecutive numbers the answer is ALWAYS a perfect square.

To find the integral of a polynomial, evaluate it at some special points and add multiples of these values.

Can you explain why a sequence of operations always gives you perfect squares?

Eulerian and Hamiltonian circuits are defined with some simple examples and a couple of puzzles to illustrate Hamiltonian circuits.

This article invites you to get familiar with a strategic game called "sprouts". The game is simple enough for younger children to understand, and has also provided experienced mathematicians with. . . .

Show that the arithmetic mean, geometric mean and harmonic mean of a and b can be the lengths of the sides of a right-angles triangle if and only if a = bx^3, where x is the Golden Ratio.

A introduction to how patterns can be deceiving, and what is and is not a proof.

With n people anywhere in a field each shoots a water pistol at the nearest person. In general who gets wet? What difference does it make if n is odd or even?

A polite number can be written as the sum of two or more consecutive positive integers. Find the consecutive sums giving the polite numbers 544 and 424. What characterizes impolite numbers?

Can you work out where the blue-and-red brick roads end?