Peter Zimmerman from Mill Hill County High School in Barnet, London gives a neat proof that: 5^(2n+1) + 11^(2n+1) + 17^(2n+1) is divisible by 33 for every non negative integer n.

What can you say about the common difference of an AP where every term is prime?

The nth term of a sequence is given by the formula n^3 + 11n . Find the first four terms of the sequence given by this formula and the first term of the sequence which is bigger than one million. . . .

An account of methods for finding whether or not a number can be written as the sum of two or more squares or as the sum of two or more cubes.

Peter Zimmerman, a Year 13 student at Mill Hill County High School in Barnet, London wrote this account of modulus arithmetic.

By considering powers of (1+x), show that the sum of the squares of the binomial coefficients from 0 to n is 2nCn

We only need 7 numbers for modulus (or clock) arithmetic mod 7 including working with fractions. Explore how to divide numbers and write fractions in modulus arithemtic.

Take a complicated fraction with the product of five quartics top and bottom and reduce this to a whole number. This is a numerical example involving some clever algebra.

Some diagrammatic 'proofs' of algebraic identities and inequalities.

An introduction to some beautiful results of Number Theory (a branch of pure mathematics devoted primarily to the study of the integers and integer-valued functions)

Can you convince me of each of the following: If a square number is multiplied by a square number the product is ALWAYS a square number...

A composite number is one that is neither prime nor 1. Show that 10201 is composite in any base.

By proving these particular identities, prove the existence of general cases.

Caroline and James pick sets of five numbers. Charlie chooses three of them that add together to make a multiple of three. Can they stop him?

Find the largest integer which divides every member of the following sequence: 1^5-1, 2^5-2, 3^5-3, ... n^5-n.

A polite number can be written as the sum of two or more consecutive positive integers. Find the consecutive sums giving the polite numbers 544 and 424. What characterizes impolite numbers?

Which is the biggest and which the smallest of $2000^{2002}, 2001^{2001} \text{and } 2002^{2000}$?

Prove that if a^2+b^2 is a multiple of 3 then both a and b are multiples of 3.

With n people anywhere in a field each shoots a water pistol at the nearest person. In general who gets wet? What difference does it make if n is odd or even?

The sums of the squares of three related numbers is also a perfect square - can you explain why?

Show that the arithmetic mean, geometric mean and harmonic mean of a and b can be the lengths of the sides of a right-angles triangle if and only if a = bx^3, where x is the Golden Ratio.

Find the smallest positive integer N such that N/2 is a perfect cube, N/3 is a perfect fifth power and N/5 is a perfect seventh power.

Find all real solutions of the equation (x^2-7x+11)^(x^2-11x+30) = 1.

Have a go at being mathematically negative, by negating these statements.

Investigate the sequences obtained by starting with any positive 2 digit number (10a+b) and repeatedly using the rule 10a+b maps to 10b-a to get the next number in the sequence.

How many noughts are at the end of these giant numbers?

If you think that mathematical proof is really clearcut and universal then you should read this article.

When if ever do you get the right answer if you add two fractions by adding the numerators and adding the denominators?

Show that if you add 1 to the product of four consecutive numbers the answer is ALWAYS a perfect square.

Take any prime number greater than 3 , square it and subtract one. Working on the building blocks will help you to explain what is special about your results.

Find all positive integers a and b for which the two equations: x^2-ax+b = 0 and x^2-bx+a = 0 both have positive integer solutions.

An inequality involving integrals of squares of functions.

Explore what happens when you draw graphs of quadratic equations with coefficients based on a geometric sequence.

Show that x = 1 is a solution of the equation x^(3/2) - 8x^(-3/2) = 7 and find all other solutions.

Explore a number pattern which has the same symmetries in different bases.

If a two digit number has its digits reversed and the smaller of the two numbers is subtracted from the larger, prove the difference can never be prime.

Given that u>0 and v>0 find the smallest possible value of 1/u + 1/v given that u + v = 5 by different methods.

Prove that in every tetrahedron there is a vertex such that the three edges meeting there have lengths which could be the sides of a triangle.

Kyle and his teacher disagree about his test score - who is right?

Can you rearrange the cards to make a series of correct mathematical statements?

Show that for natural numbers x and y if x/y > 1 then x/y>(x+1)/(y+1}>1. Hence prove that the product for i=1 to n of [(2i)/(2i-1)] tends to infinity as n tends to infinity.

Take any two numbers between 0 and 1. Prove that the sum of the numbers is always less than one plus their product?

In this article we show that every whole number can be written as a continued fraction of the form k/(1+k/(1+k/...)).

Make and prove a conjecture about the value of the product of the Fibonacci numbers $F_{n+1}F_{n-1}$.

To find the integral of a polynomial, evaluate it at some special points and add multiples of these values.