Peter Zimmerman from Mill Hill County High School in Barnet, London gives a neat proof that: 5^(2n+1) + 11^(2n+1) + 17^(2n+1) is divisible by 33 for every non negative integer n.

The nth term of a sequence is given by the formula n^3 + 11n . Find the first four terms of the sequence given by this formula and the first term of the sequence which is bigger than one million. . . .

An account of methods for finding whether or not a number can be written as the sum of two or more squares or as the sum of two or more cubes.

Take any prime number greater than 3 , square it and subtract one. Working on the building blocks will help you to explain what is special about your results.

What can you say about the common difference of an AP where every term is prime?

Find the smallest positive integer N such that N/2 is a perfect cube, N/3 is a perfect fifth power and N/5 is a perfect seventh power.

Prove that if a^2+b^2 is a multiple of 3 then both a and b are multiples of 3.

Find the largest integer which divides every member of the following sequence: 1^5-1, 2^5-2, 3^5-3, ... n^5-n.

A polite number can be written as the sum of two or more consecutive positive integers. Find the consecutive sums giving the polite numbers 544 and 424. What characterizes impolite numbers?

We only need 7 numbers for modulus (or clock) arithmetic mod 7 including working with fractions. Explore how to divide numbers and write fractions in modulus arithemtic.

Caroline and James pick sets of five numbers. Charlie chooses three of them that add together to make a multiple of three. Can they stop him?

How many noughts are at the end of these giant numbers?

Take a complicated fraction with the product of five quartics top and bottom and reduce this to a whole number. This is a numerical example involving some clever algebra.

Prove that if the integer n is divisible by 4 then it can be written as the difference of two squares.

By considering powers of (1+x), show that the sum of the squares of the binomial coefficients from 0 to n is 2nCn

Find all real solutions of the equation (x^2-7x+11)^(x^2-11x+30) = 1.

Peter Zimmerman, a Year 13 student at Mill Hill County High School in Barnet, London wrote this account of modulus arithmetic.

Which is the biggest and which the smallest of $2000^{2002}, 2001^{2001} \text{and } 2002^{2000}$?

With n people anywhere in a field each shoots a water pistol at the nearest person. In general who gets wet? What difference does it make if n is odd or even?

Can you convince me of each of the following: If a square number is multiplied by a square number the product is ALWAYS a square number...

A composite number is one that is neither prime nor 1. Show that 10201 is composite in any base.

Explore a number pattern which has the same symmetries in different bases.

An introduction to some beautiful results of Number Theory (a branch of pure mathematics devoted primarily to the study of the integers and integer-valued functions)

The sums of the squares of three related numbers is also a perfect square - can you explain why?

By proving these particular identities, prove the existence of general cases.

Can you explain why a sequence of operations always gives you perfect squares?

Show that the arithmetic mean, geometric mean and harmonic mean of a and b can be the lengths of the sides of a right-angles triangle if and only if a = bx^3, where x is the Golden Ratio.

Euler found four whole numbers such that the sum of any two of the numbers is a perfect square...

Some diagrammatic 'proofs' of algebraic identities and inequalities.

Show that if you add 1 to the product of four consecutive numbers the answer is ALWAYS a perfect square.

Explore what happens when you draw graphs of quadratic equations with coefficients based on a geometric sequence.

Kyle and his teacher disagree about his test score - who is right?

When is it impossible to make number sandwiches?

Given any two polynomials in a single variable it is always possible to eliminate the variable and obtain a formula showing the relationship between the two polynomials. Try this one.

Is the mean of the squares of two numbers greater than, or less than, the square of their means?

Find all positive integers a and b for which the two equations: x^2-ax+b = 0 and x^2-bx+a = 0 both have positive integer solutions.

If x + y = -1 find the largest value of xy by coordinate geometry, by calculus and by algebra.

Can you rearrange the cards to make a series of correct mathematical statements?

The first of two articles on Pythagorean Triples which asks how many right angled triangles can you find with the lengths of each side exactly a whole number measurement. Try it!

This is the second article on right-angled triangles whose edge lengths are whole numbers.

This article discusses how every Pythagorean triple (a, b, c) can be illustrated by a square and an L shape within another square. You are invited to find some triples for yourself.

Take any two numbers between 0 and 1. Prove that the sum of the numbers is always less than one plus their product?

Janine noticed, while studying some cube numbers, that if you take three consecutive whole numbers and multiply them together and then add the middle number of the three, you get the middle number. . . .

What is the largest number of intersection points that a triangle and a quadrilateral can have?

Show that for natural numbers x and y if x/y > 1 then x/y>(x+1)/(y+1}>1. Hence prove that the product for i=1 to n of [(2i)/(2i-1)] tends to infinity as n tends to infinity.

An inequality involving integrals of squares of functions.