Can you correctly order the steps in the proof of the formula for the sum of a geometric series?

Prove Pythagoras' Theorem using enlargements and scale factors.

Explore what happens when you draw graphs of quadratic equations with coefficients based on a geometric sequence.

Freddie Manners, of Packwood Haugh School in Shropshire solved an alphanumeric without using the extra information supplied and this article explains his reasoning.

With n people anywhere in a field each shoots a water pistol at the nearest person. In general who gets wet? What difference does it make if n is odd or even?

Can you make sense of these three proofs of Pythagoras' Theorem?

Explore a number pattern which has the same symmetries in different bases.

If a two digit number has its digits reversed and the smaller of the two numbers is subtracted from the larger, prove the difference can never be prime.

L triominoes can fit together to make larger versions of themselves. Is every size possible to make in this way?

Take any pair of two digit numbers x=ab and y=cd where, without loss of generality, ab > cd . Form two 4 digit numbers r=abcd and s=cdab and calculate: {r^2 - s^2} /{x^2 - y^2}.

It is impossible to trisect an angle using only ruler and compasses but it can be done using a carpenter's square.

An equilateral triangle is constructed on BC. A line QD is drawn, where Q is the midpoint of AC. Prove that AB // QD.

Construct two equilateral triangles on a straight line. There are two lengths that look the same - can you prove it?

A composite number is one that is neither prime nor 1. Show that 10201 is composite in any base.

Can you see how this picture illustrates the formula for the sum of the first six cube numbers?

This follows up the 'magic Squares for Special Occasions' article which tells you you to create a 4by4 magicsquare with a special date on the top line using no negative numbers and no repeats.

Imagine two identical cylindrical pipes meeting at right angles and think about the shape of the space which belongs to both pipes. Early Chinese mathematicians call this shape the mouhefanggai.

Some diagrammatic 'proofs' of algebraic identities and inequalities.

Toni Beardon has chosen this article introducing a rich area for practical exploration and discovery in 3D geometry

Fractional calculus is a generalisation of ordinary calculus where you can differentiate n times when n is not a whole number.

In this 7-sandwich: 7 1 3 1 6 4 3 5 7 2 4 6 2 5 there are 7 numbers between the 7s, 6 between the 6s etc. The article shows which values of n can make n-sandwiches and which cannot.

Can you convince me of each of the following: If a square number is multiplied by a square number the product is ALWAYS a square number...

We continue the discussion given in Euclid's Algorithm I, and here we shall discover when an equation of the form ax+by=c has no solutions, and when it has infinitely many solutions.

Peter Zimmerman from Mill Hill County High School in Barnet, London gives a neat proof that: 5^(2n+1) + 11^(2n+1) + 17^(2n+1) is divisible by 33 for every non negative integer n.

What is the largest number of intersection points that a triangle and a quadrilateral can have?

A polite number can be written as the sum of two or more consecutive positive integers. Find the consecutive sums giving the polite numbers 544 and 424. What characterizes impolite numbers?

To find the integral of a polynomial, evaluate it at some special points and add multiples of these values.

Find all positive integers a and b for which the two equations: x^2-ax+b = 0 and x^2-bx+a = 0 both have positive integer solutions.

Prove that you cannot form a Magic W with a total of 12 or less or with a with a total of 18 or more.

Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.

The first of two articles on Pythagorean Triples which asks how many right angled triangles can you find with the lengths of each side exactly a whole number measurement. Try it!

This is the second article on right-angled triangles whose edge lengths are whole numbers.

Suppose A always beats B and B always beats C, then would you expect A to beat C? Not always! What seems obvious is not always true. Results always need to be proved in mathematics.

When if ever do you get the right answer if you add two fractions by adding the numerators and adding the denominators?

Take a complicated fraction with the product of five quartics top and bottom and reduce this to a whole number. This is a numerical example involving some clever algebra.

Professor Korner has generously supported school mathematics for more than 30 years and has been a good friend to NRICH since it started.

Some puzzles requiring no knowledge of knot theory, just a careful inspection of the patterns. A glimpse of the classification of knots and a little about prime knots, crossing numbers and. . . .

An account of methods for finding whether or not a number can be written as the sum of two or more squares or as the sum of two or more cubes.

This article discusses how every Pythagorean triple (a, b, c) can be illustrated by a square and an L shape within another square. You are invited to find some triples for yourself.

Take any two numbers between 0 and 1. Prove that the sum of the numbers is always less than one plus their product?

ABCD is a square. P is the midpoint of AB and is joined to C. A line from D perpendicular to PC meets the line at the point Q. Prove AQ = AD.

Have a go at being mathematically negative, by negating these statements.

When is it impossible to make number sandwiches?

Can you make sense of the three methods to work out the area of the kite in the square?

By proving these particular identities, prove the existence of general cases.

If I tell you two sides of a right-angled triangle, you can easily work out the third. But what if the angle between the two sides is not a right angle?