Semicircles are drawn on the sides of a rectangle. Prove that the sum of the areas of the four crescents is equal to the area of the rectangle.

It is obvious that we can fit four circles of diameter 1 unit in a square of side 2 without overlapping. What is the smallest square into which we can fit 3 circles of diameter 1 unit?

The largest square which fits into a circle is ABCD and EFGH is a square with G and H on the line CD and E and F on the circumference of the circle. Show that AB = 5EF. Similarly the largest. . . .

Find the missing angle between the two secants to the circle when the two angles at the centre subtended by the arcs created by the intersections of the secants and the circle are 50 and 120 degrees.

An equilateral triangle is sitting on top of a square. What is the radius of the circle that circumscribes this shape?

Prove that the shaded area of the semicircle is equal to the area of the inner circle.

Take any rectangle ABCD such that AB > BC. The point P is on AB and Q is on CD. Show that there is exactly one position of P and Q such that APCQ is a rhombus.

ABCD is a square. P is the midpoint of AB and is joined to C. A line from D perpendicular to PC meets the line at the point Q. Prove AQ = AD.

This shape comprises four semi-circles. What is the relationship between the area of the shaded region and the area of the circle on AB as diameter?

The diagram shows a regular pentagon with sides of unit length. Find all the angles in the diagram. Prove that the quadrilateral shown in red is a rhombus.

Can you make sense of these three proofs of Pythagoras' Theorem?

A circle has centre O and angle POR = angle QOR. Construct tangents at P and Q meeting at T. Draw a circle with diameter OT. Do P and Q lie inside, or on, or outside this circle?

If I tell you two sides of a right-angled triangle, you can easily work out the third. But what if the angle between the two sides is not a right angle?

What can you say about the lengths of the sides of a quadrilateral whose vertices are on a unit circle?

If for any triangle ABC tan(A - B) + tan(B - C) + tan(C - A) = 0 what can you say about the triangle?

Draw some quadrilaterals on a 9-point circle and work out the angles. Is there a theorem?

Three points A, B and C lie in this order on a line, and P is any point in the plane. Use the Cosine Rule to prove the following statement.

The twelve edge totals of a standard six-sided die are distributed symmetrically. Will the same symmetry emerge with a dodecahedral die?

Can you find the areas of the trapezia in this sequence?

A picture is made by joining five small quadrilaterals together to make a large quadrilateral. Is it possible to draw a similar picture if all the small quadrilaterals are cyclic?

A point moves around inside a rectangle. What are the least and the greatest values of the sum of the squares of the distances from the vertices?

Prove that, given any three parallel lines, an equilateral triangle always exists with one vertex on each of the three lines.

An equilateral triangle is constructed on BC. A line QD is drawn, where Q is the midpoint of AC. Prove that AB // QD.

Here is a proof of Euler's formula in the plane and on a sphere together with projects to explore cases of the formula for a polygon with holes, for the torus and other solids with holes and the. . . .

Investigate the number of points with integer coordinates on circles with centres at the origin for which the square of the radius is a power of 5.

Toni Beardon has chosen this article introducing a rich area for practical exploration and discovery in 3D geometry

Four identical right angled triangles are drawn on the sides of a square. Two face out, two face in. Why do the four vertices marked with dots lie on one line?

Which of these triangular jigsaws are impossible to finish?

This article discusses how every Pythagorean triple (a, b, c) can be illustrated by a square and an L shape within another square. You are invited to find some triples for yourself.

Can you make sense of the three methods to work out the area of the kite in the square?

We are given a regular icosahedron having three red vertices. Show that it has a vertex that has at least two red neighbours.

Prove Pythagoras' Theorem using enlargements and scale factors.

Keep constructing triangles in the incircle of the previous triangle. What happens?

Prove that in every tetrahedron there is a vertex such that the three edges meeting there have lengths which could be the sides of a triangle.

This is the second article on right-angled triangles whose edge lengths are whole numbers.

The first of two articles on Pythagorean Triples which asks how many right angled triangles can you find with the lengths of each side exactly a whole number measurement. Try it!

Can you convince me of each of the following: If a square number is multiplied by a square number the product is ALWAYS a square number...

A composite number is one that is neither prime nor 1. Show that 10201 is composite in any base.

Peter Zimmerman, a Year 13 student at Mill Hill County High School in Barnet, London wrote this account of modulus arithmetic.

Kyle and his teacher disagree about his test score - who is right?

Imagine two identical cylindrical pipes meeting at right angles and think about the shape of the space which belongs to both pipes. Early Chinese mathematicians call this shape the mouhefanggai.

This follows up the 'magic Squares for Special Occasions' article which tells you you to create a 4by4 magicsquare with a special date on the top line using no negative numbers and no repeats.

Some diagrammatic 'proofs' of algebraic identities and inequalities.

Fractional calculus is a generalisation of ordinary calculus where you can differentiate n times when n is not a whole number.

In this 7-sandwich: 7 1 3 1 6 4 3 5 7 2 4 6 2 5 there are 7 numbers between the 7s, 6 between the 6s etc. The article shows which values of n can make n-sandwiches and which cannot.

We continue the discussion given in Euclid's Algorithm I, and here we shall discover when an equation of the form ax+by=c has no solutions, and when it has infinitely many solutions.

In this article we show that every whole number can be written as a continued fraction of the form k/(1+k/(1+k/...)).