Take a complicated fraction with the product of five quartics top and bottom and reduce this to a whole number. This is a numerical example involving some clever algebra.

The nth term of a sequence is given by the formula n^3 + 11n . Find the first four terms of the sequence given by this formula and the first term of the sequence which is bigger than one million. . . .

Find all real solutions of the equation (x^2-7x+11)^(x^2-11x+30) = 1.

Peter Zimmerman from Mill Hill County High School in Barnet, London gives a neat proof that: 5^(2n+1) + 11^(2n+1) + 17^(2n+1) is divisible by 33 for every non negative integer n.

An account of methods for finding whether or not a number can be written as the sum of two or more squares or as the sum of two or more cubes.

The sums of the squares of three related numbers is also a perfect square - can you explain why?

What can you say about the common difference of an AP where every term is prime?

Which is the biggest and which the smallest of $2000^{2002}, 2001^{2001} \text{and } 2002^{2000}$?

By considering powers of (1+x), show that the sum of the squares of the binomial coefficients from 0 to n is 2nCn

A polite number can be written as the sum of two or more consecutive positive integers. Find the consecutive sums giving the polite numbers 544 and 424. What characterizes impolite numbers?

Peter Zimmerman, a Year 13 student at Mill Hill County High School in Barnet, London wrote this account of modulus arithmetic.

When if ever do you get the right answer if you add two fractions by adding the numerators and adding the denominators?

Investigate the number of points with integer coordinates on circles with centres at the origin for which the square of the radius is a power of 5.

Can you convince me of each of the following: If a square number is multiplied by a square number the product is ALWAYS a square number...

Investigate the sequences obtained by starting with any positive 2 digit number (10a+b) and repeatedly using the rule 10a+b maps to 10b-a to get the next number in the sequence.

Make and prove a conjecture about the value of the product of the Fibonacci numbers $F_{n+1}F_{n-1}$.

Is the mean of the squares of two numbers greater than, or less than, the square of their means?

Find the largest integer which divides every member of the following sequence: 1^5-1, 2^5-2, 3^5-3, ... n^5-n.

Relate these algebraic expressions to geometrical diagrams.

Find a connection between the shape of a special ellipse and an infinite string of nested square roots.

Take any two numbers between 0 and 1. Prove that the sum of the numbers is always less than one plus their product?

Given any two polynomials in a single variable it is always possible to eliminate the variable and obtain a formula showing the relationship between the two polynomials. Try this one.

We only need 7 numbers for modulus (or clock) arithmetic mod 7 including working with fractions. Explore how to divide numbers and write fractions in modulus arithemtic.

Show that x = 1 is a solution of the equation x^(3/2) - 8x^(-3/2) = 7 and find all other solutions.

With n people anywhere in a field each shoots a water pistol at the nearest person. In general who gets wet? What difference does it make if n is odd or even?

By proving these particular identities, prove the existence of general cases.

Given that a, b and c are natural numbers show that if sqrt a+sqrt b is rational then it is a natural number. Extend this to 3 variables.

Show that the arithmetic mean, geometric mean and harmonic mean of a and b can be the lengths of the sides of a right-angles triangle if and only if a = bx^3, where x is the Golden Ratio.

A point moves around inside a rectangle. What are the least and the greatest values of the sum of the squares of the distances from the vertices?

Show that for natural numbers x and y if x/y > 1 then x/y>(x+1)/(y+1}>1. Hence prove that the product for i=1 to n of [(2i)/(2i-1)] tends to infinity as n tends to infinity.

Given a set of points (x,y) with distinct x values, find a polynomial that goes through all of them, then prove some results about the existence and uniqueness of these polynomials.

In this article we show that every whole number can be written as a continued fraction of the form k/(1+k/(1+k/...)).

Find all positive integers a and b for which the two equations: x^2-ax+b = 0 and x^2-bx+a = 0 both have positive integer solutions.

An introduction to some beautiful results of Number Theory (a branch of pure mathematics devoted primarily to the study of the integers and integer-valued functions)

The sum of any two of the numbers 2, 34 and 47 is a perfect square. Choose three square numbers and find sets of three integers with this property. Generalise to four integers.

Prove that if a^2+b^2 is a multiple of 3 then both a and b are multiples of 3.

Some diagrammatic 'proofs' of algebraic identities and inequalities.

Explore the continued fraction: 2+3/(2+3/(2+3/2+...)) What do you notice when successive terms are taken? What happens to the terms if the fraction goes on indefinitely?

If x + y = -1 find the largest value of xy by coordinate geometry, by calculus and by algebra.

Fractional calculus is a generalisation of ordinary calculus where you can differentiate n times when n is not a whole number.

Kyle and his teacher disagree about his test score - who is right?

Caroline and James pick sets of five numbers. Charlie chooses three of them that add together to make a multiple of three. Can they stop him?

Take any prime number greater than 3 , square it and subtract one. Working on the building blocks will help you to explain what is special about your results.

To find the integral of a polynomial, evaluate it at some special points and add multiples of these values.

Find the smallest positive integer N such that N/2 is a perfect cube, N/3 is a perfect fifth power and N/5 is a perfect seventh power.

Show that if you add 1 to the product of four consecutive numbers the answer is ALWAYS a perfect square.

A composite number is one that is neither prime nor 1. Show that 10201 is composite in any base.