Three equilateral triangles ABC, AYX and XZB are drawn with the point X a moveable point on AB. The points P, Q and R are the centres of the three triangles. What can you say about triangle PQR?

This is an interactivity in which you have to sort the steps in the completion of the square into the correct order to prove the formula for the solutions of quadratic equations.

In this article we show that every whole number can be written as a continued fraction of the form k/(1+k/(1+k/...)).

Prove that in every tetrahedron there is a vertex such that the three edges meeting there have lengths which could be the sides of a triangle.

Which of these triangular jigsaws are impossible to finish?

Find a connection between the shape of a special ellipse and an infinite string of nested square roots.

Show that x = 1 is a solution of the equation x^(3/2) - 8x^(-3/2) = 7 and find all other solutions.

Explore the continued fraction: 2+3/(2+3/(2+3/2+...)) What do you notice when successive terms are taken? What happens to the terms if the fraction goes on indefinitely?

Put the steps of this proof in order to find the formula for the sum of an arithmetic sequence

Can you correctly order the steps in the proof of the formula for the sum of the first n terms in a geometric sequence?

Starting with one of the mini-challenges, how many of the other mini-challenges will you invent for yourself?

Can you work out where the blue-and-red brick roads end?

Can you work through these direct proofs, using our interactive proof sorters?

Given that a, b and c are natural numbers show that if sqrt a+sqrt b is rational then it is a natural number. Extend this to 3 variables.

Investigate the number of points with integer coordinates on circles with centres at the origin for which the square of the radius is a power of 5.

The picture illustrates the sum 1 + 2 + 3 + 4 = (4 x 5)/2. Prove the general formula for the sum of the first n natural numbers and the formula for the sum of the cubes of the first n natural. . . .

Is the mean of the squares of two numbers greater than, or less than, the square of their means?

Prove that if a^2+b^2 is a multiple of 3 then both a and b are multiples of 3.

Can you see how this picture illustrates the formula for the sum of the first six cube numbers?

An iterative method for finding the value of the Golden Ratio with explanations of how this involves the ratios of Fibonacci numbers and continued fractions.

Pick a square within a multiplication square and add the numbers on each diagonal. What do you notice?

Make and prove a conjecture about the value of the product of the Fibonacci numbers $F_{n+1}F_{n-1}$.

Sort these mathematical propositions into a series of 8 correct statements.

The tangles created by the twists and turns of the Conway rope trick are surprisingly symmetrical. Here's why!

Keep constructing triangles in the incircle of the previous triangle. What happens?

Find the largest integer which divides every member of the following sequence: 1^5-1, 2^5-2, 3^5-3, ... n^5-n.

Given any two polynomials in a single variable it is always possible to eliminate the variable and obtain a formula showing the relationship between the two polynomials. Try this one.

Fractional calculus is a generalisation of ordinary calculus where you can differentiate n times when n is not a whole number.

This article invites you to get familiar with a strategic game called "sprouts". The game is simple enough for younger children to understand, and has also provided experienced mathematicians with. . . .

A point moves around inside a rectangle. What are the least and the greatest values of the sum of the squares of the distances from the vertices?

In this 7-sandwich: 7 1 3 1 6 4 3 5 7 2 4 6 2 5 there are 7 numbers between the 7s, 6 between the 6s etc. The article shows which values of n can make n-sandwiches and which cannot.

We continue the discussion given in Euclid's Algorithm I, and here we shall discover when an equation of the form ax+by=c has no solutions, and when it has infinitely many solutions.

This article discusses how every Pythagorean triple (a, b, c) can be illustrated by a square and an L shape within another square. You are invited to find some triples for yourself.

Some puzzles requiring no knowledge of knot theory, just a careful inspection of the patterns. A glimpse of the classification of knots and a little about prime knots, crossing numbers and. . . .

Professor Korner has generously supported school mathematics for more than 30 years and has been a good friend to NRICH since it started.

Take a complicated fraction with the product of five quartics top and bottom and reduce this to a whole number. This is a numerical example involving some clever algebra.

When if ever do you get the right answer if you add two fractions by adding the numerators and adding the denominators?

Take any prime number greater than 3 , square it and subtract one. Working on the building blocks will help you to explain what is special about your results.

Find the smallest positive integer N such that N/2 is a perfect cube, N/3 is a perfect fifth power and N/5 is a perfect seventh power.

Prove Pythagoras' Theorem using enlargements and scale factors.

Find all real solutions of the equation (x^2-7x+11)^(x^2-11x+30) = 1.

Take any two numbers between 0 and 1. Prove that the sum of the numbers is always less than one plus their product?

Find all positive integers a and b for which the two equations: x^2-ax+b = 0 and x^2-bx+a = 0 both have positive integer solutions.

A polite number can be written as the sum of two or more consecutive positive integers. Find the consecutive sums giving the polite numbers 544 and 424. What characterizes impolite numbers?

The sum of any two of the numbers 2, 34 and 47 is a perfect square. Choose three square numbers and find sets of three integers with this property. Generalise to four integers.

Which is the biggest and which the smallest of $2000^{2002}, 2001^{2001} \text{and } 2002^{2000}$?

If you think that mathematical proof is really clearcut and universal then you should read this article.