Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.
A huge wheel is rolling past your window. What do you see?
Show that among the interior angles of a convex polygon there cannot be more than three acute angles.
Can you see how this picture illustrates the formula for the sum of the first six cube numbers?
Do you know how to find the area of a triangle? You can count the squares. What happens if we turn the triangle on end? Press the button and see. Try counting the number of units in the triangle now. . . .
When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...
A standard die has the numbers 1, 2 and 3 are opposite 6, 5 and 4 respectively so that opposite faces add to 7? If you make standard dice by writing 1, 2, 3, 4, 5, 6 on blank cubes you will find. . . .
Can you cross each of the seven bridges that join the north and south of the river to the two islands, once and once only, without retracing your steps?
Toni Beardon has chosen this article introducing a rich area for practical exploration and discovery in 3D geometry
If you can copy a network without lifting your pen off the paper and without drawing any line twice, then it is traversable. Decide which of these diagrams are traversable.
The picture illustrates the sum 1 + 2 + 3 + 4 = (4 x 5)/2. Prove the general formula for the sum of the first n natural numbers and the formula for the sum of the cubes of the first n natural. . . .
We are given a regular icosahedron having three red vertices. Show that it has a vertex that has at least two red neighbours.
Is it possible to rearrange the numbers 1,2......12 around a clock face in such a way that every two numbers in adjacent positions differ by any of 3, 4 or 5 hours?
Some puzzles requiring no knowledge of knot theory, just a careful inspection of the patterns. A glimpse of the classification of knots and a little about prime knots, crossing numbers and. . . .
In how many ways can you arrange three dice side by side on a surface so that the sum of the numbers on each of the four faces (top, bottom, front and back) is equal?
This is an interactivity in which you have to sort the steps in the completion of the square into the correct order to prove the formula for the solutions of quadratic equations.
Kyle and his teacher disagree about his test score - who is right?
You can work out the number someone else is thinking of as follows. Ask a friend to think of any natural number less than 100. Then ask them to tell you the remainders when this number is divided by. . . .
Prove Pythagoras' Theorem using enlargements and scale factors.
Janine noticed, while studying some cube numbers, that if you take three consecutive whole numbers and multiply them together and then add the middle number of the three, you get the middle number. . . .
Spotting patterns can be an important first step - explaining why it is appropriate to generalise is the next step, and often the most interesting and important.
Blue Flibbins are so jealous of their red partners that they will not leave them on their own with any other bue Flibbin. What is the quickest way of getting the five pairs of Flibbins safely to. . . .
The Tower of Hanoi is an ancient mathematical challenge. Working on the building blocks may help you to explain the patterns you notice.
This article invites you to get familiar with a strategic game called "sprouts". The game is simple enough for younger children to understand, and has also provided experienced mathematicians with. . . .
A little bit of algebra explains this 'magic'. Ask a friend to pick 3 consecutive numbers and to tell you a multiple of 3. Then ask them to add the four numbers and multiply by 67, and to tell you. . . .
Can you make sense of these three proofs of Pythagoras' Theorem?
L triominoes can fit together to make larger versions of themselves. Is every size possible to make in this way?
The knight's move on a chess board is 2 steps in one direction and one step in the other direction. Prove that a knight cannot visit every square on the board once and only (a tour) on a 2 by n board. . . .
Draw some quadrilaterals on a 9-point circle and work out the angles. Is there a theorem?
Construct two equilateral triangles on a straight line. There are two lengths that look the same - can you prove it?
Pick a square within a multiplication square and add the numbers on each diagonal. What do you notice?
Choose a couple of the sequences. Try to picture how to make the next, and the next, and the next... Can you describe your reasoning?
Advent Calendar 2011 - a mathematical activity for each day during the run-up to Christmas.
It is impossible to trisect an angle using only ruler and compasses but it can be done using a carpenter's square.
Imagine we have four bags containing a large number of 1s, 4s, 7s and 10s. What numbers can we make?
Imagine we have four bags containing numbers from a sequence. What numbers can we make now?
Four jewellers share their stock. Can you work out the relative values of their gems?
Take any pair of two digit numbers x=ab and y=cd where, without loss of generality, ab > cd . Form two 4 digit numbers r=abcd and s=cdab and calculate: {r^2 - s^2} /{x^2 - y^2}.
Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.
Gabriel multiplied together some numbers and then erased them. Can you figure out where each number was?
The country Sixtania prints postage stamps with only three values 6 lucres, 10 lucres and 15 lucres (where the currency is in lucres).Which values cannot be made up with combinations of these postage. . . .
Try to solve this very difficult problem and then study our two suggested solutions. How would you use your knowledge to try to solve variants on the original problem?
Can you arrange the numbers 1 to 17 in a row so that each adjacent pair adds up to a square number?
Caroline and James pick sets of five numbers. Charlie chooses three of them that add together to make a multiple of three. Can they stop him?
What does logic mean to us and is that different to mathematical logic? We will explore these questions in this article.
How many pairs of numbers can you find that add up to a multiple of 11? Do you notice anything interesting about your results?