Choose a couple of the sequences. Try to picture how to make the next, and the next, and the next... Can you describe your reasoning?

When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...

Can you cross each of the seven bridges that join the north and south of the river to the two islands, once and once only, without retracing your steps?

Spotting patterns can be an important first step - explaining why it is appropriate to generalise is the next step, and often the most interesting and important.

A standard die has the numbers 1, 2 and 3 are opposite 6, 5 and 4 respectively so that opposite faces add to 7? If you make standard dice by writing 1, 2, 3, 4, 5, 6 on blank cubes you will find. . . .

A little bit of algebra explains this 'magic'. Ask a friend to pick 3 consecutive numbers and to tell you a multiple of 3. Then ask them to add the four numbers and multiply by 67, and to tell you. . . .

If you can copy a network without lifting your pen off the paper and without drawing any line twice, then it is traversable. Decide which of these diagrams are traversable.

The picture illustrates the sum 1 + 2 + 3 + 4 = (4 x 5)/2. Prove the general formula for the sum of the first n natural numbers and the formula for the sum of the cubes of the first n natural. . . .

A huge wheel is rolling past your window. What do you see?

Imagine we have four bags containing a large number of 1s, 4s, 7s and 10s. What numbers can we make?

Show that among the interior angles of a convex polygon there cannot be more than three acute angles.

ABC is an equilateral triangle and P is a point in the interior of the triangle. We know that AP = 3cm and BP = 4cm. Prove that CP must be less than 10 cm.

You can work out the number someone else is thinking of as follows. Ask a friend to think of any natural number less than 100. Then ask them to tell you the remainders when this number is divided by. . . .

Is it possible to rearrange the numbers 1,2......12 around a clock face in such a way that every two numbers in adjacent positions differ by any of 3, 4 or 5 hours?

Caroline and James pick sets of five numbers. Charlie chooses three of them that add together to make a multiple of three. Can they stop him?

Some puzzles requiring no knowledge of knot theory, just a careful inspection of the patterns. A glimpse of the classification of knots and a little about prime knots, crossing numbers and. . . .

Prove Pythagoras' Theorem using enlargements and scale factors.

Do you know how to find the area of a triangle? You can count the squares. What happens if we turn the triangle on end? Press the button and see. Try counting the number of units in the triangle now. . . .

Liam's house has a staircase with 12 steps. He can go down the steps one at a time or two at time. In how many different ways can Liam go down the 12 steps?

In how many ways can you arrange three dice side by side on a surface so that the sum of the numbers on each of the four faces (top, bottom, front and back) is equal?

The Tower of Hanoi is an ancient mathematical challenge. Working on the building blocks may help you to explain the patterns you notice.

Blue Flibbins are so jealous of their red partners that they will not leave them on their own with any other bue Flibbin. What is the quickest way of getting the five pairs of Flibbins safely to. . . .

Which set of numbers that add to 10 have the largest product?

Pick the number of times a week that you eat chocolate. This number must be more than one but less than ten. Multiply this number by 2. Add 5 (for Sunday). Multiply by 50... Can you explain why it. . . .

A paradox is a statement that seems to be both untrue and true at the same time. This article looks at a few examples and challenges you to investigate them for yourself.

Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.

A picture is made by joining five small quadrilaterals together to make a large quadrilateral. Is it possible to draw a similar picture if all the small quadrilaterals are cyclic?

Nine cross country runners compete in a team competition in which there are three matches. If you were a judge how would you decide who would win?

This article invites you to get familiar with a strategic game called "sprouts". The game is simple enough for younger children to understand, and has also provided experienced mathematicians with. . . .

Can you see how this picture illustrates the formula for the sum of the first six cube numbers?

This is an interactivity in which you have to sort the steps in the completion of the square into the correct order to prove the formula for the solutions of quadratic equations.

Imagine we have four bags containing numbers from a sequence. What numbers can we make now?

If you know the sizes of the angles marked with coloured dots in this diagram which angles can you find by calculation?

What can you say about the lengths of the sides of a quadrilateral whose vertices are on a unit circle?

Four jewellers share their stock. Can you work out the relative values of their gems?

Carry out cyclic permutations of nine digit numbers containing the digits from 1 to 9 (until you get back to the first number). Prove that whatever number you choose, they will add to the same total.

Use the numbers in the box below to make the base of a top-heavy pyramid whose top number is 200.

Toni Beardon has chosen this article introducing a rich area for practical exploration and discovery in 3D geometry

Pick a square within a multiplication square and add the numbers on each diagonal. What do you notice?

Advent Calendar 2011 - a mathematical activity for each day during the run-up to Christmas.

Try to solve this very difficult problem and then study our two suggested solutions. How would you use your knowledge to try to solve variants on the original problem?

L triominoes can fit together to make larger versions of themselves. Is every size possible to make in this way?

Draw some quadrilaterals on a 9-point circle and work out the angles. Is there a theorem?

Can you arrange the numbers 1 to 17 in a row so that each adjacent pair adds up to a square number?

How many pairs of numbers can you find that add up to a multiple of 11? Do you notice anything interesting about your results?

Can you visualise whether these nets fold up into 3D shapes? Watch the videos each time to see if you were correct.

You have twelve weights, one of which is different from the rest. Using just 3 weighings, can you identify which weight is the odd one out, and whether it is heavier or lighter than the rest?