Can you see how this picture illustrates the formula for the sum of the first six cube numbers?

A serious but easily readable discussion of proof in mathematics with some amusing stories and some interesting examples.

Pick a square within a multiplication square and add the numbers on each diagonal. What do you notice?

Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.

Janine noticed, while studying some cube numbers, that if you take three consecutive whole numbers and multiply them together and then add the middle number of the three, you get the middle number. . . .

What can you say about the lengths of the sides of a quadrilateral whose vertices are on a unit circle?

The first of two articles on Pythagorean Triples which asks how many right angled triangles can you find with the lengths of each side exactly a whole number measurement. Try it!

This is the second article on right-angled triangles whose edge lengths are whole numbers.

This is an interactivity in which you have to sort the steps in the completion of the square into the correct order to prove the formula for the solutions of quadratic equations.

You have twelve weights, one of which is different from the rest. Using just 3 weighings, can you identify which weight is the odd one out, and whether it is heavier or lighter than the rest?

Some diagrammatic 'proofs' of algebraic identities and inequalities.

The problem is how did Archimedes calculate the lengths of the sides of the polygons which needed him to be able to calculate square roots?

The picture illustrates the sum 1 + 2 + 3 + 4 = (4 x 5)/2. Prove the general formula for the sum of the first n natural numbers and the formula for the sum of the cubes of the first n natural. . . .

The sums of the squares of three related numbers is also a perfect square - can you explain why?

I added together some of my neighbours' house numbers. Can you explain the patterns I noticed?

Can you rearrange the cards to make a series of correct mathematical statements?

Explore what happens when you draw graphs of quadratic equations with coefficients based on a geometric sequence.

Try to solve this very difficult problem and then study our two suggested solutions. How would you use your knowledge to try to solve variants on the original problem?

Advent Calendar 2011 - a mathematical activity for each day during the run-up to Christmas.

Can you visualise whether these nets fold up into 3D shapes? Watch the videos each time to see if you were correct.

It is impossible to trisect an angle using only ruler and compasses but it can be done using a carpenter's square.

L triominoes can fit together to make larger versions of themselves. Is every size possible to make in this way?

In this 7-sandwich: 7 1 3 1 6 4 3 5 7 2 4 6 2 5 there are 7 numbers between the 7s, 6 between the 6s etc. The article shows which values of n can make n-sandwiches and which cannot.

Imagine we have four bags containing a large number of 1s, 4s, 7s and 10s. What numbers can we make?

This article discusses how every Pythagorean triple (a, b, c) can be illustrated by a square and an L shape within another square. You are invited to find some triples for yourself.

Some puzzles requiring no knowledge of knot theory, just a careful inspection of the patterns. A glimpse of the classification of knots and a little about prime knots, crossing numbers and. . . .

Construct two equilateral triangles on a straight line. There are two lengths that look the same - can you prove it?

If I tell you two sides of a right-angled triangle, you can easily work out the third. But what if the angle between the two sides is not a right angle?

The country Sixtania prints postage stamps with only three values 6 lucres, 10 lucres and 15 lucres (where the currency is in lucres).Which values cannot be made up with combinations of these postage. . . .

Kyle and his teacher disagree about his test score - who is right?

If you know the sizes of the angles marked with coloured dots in this diagram which angles can you find by calculation?

Show that if you add 1 to the product of four consecutive numbers the answer is ALWAYS a perfect square.

The nth term of a sequence is given by the formula n^3 + 11n . Find the first four terms of the sequence given by this formula and the first term of the sequence which is bigger than one million. . . .

Imagine we have four bags containing numbers from a sequence. What numbers can we make now?

When is it impossible to make number sandwiches?

What is the largest number of intersection points that a triangle and a quadrilateral can have?

I am exactly n times my daughter's age. In m years I shall be ... How old am I?

Explore the continued fraction: 2+3/(2+3/(2+3/2+...)) What do you notice when successive terms are taken? What happens to the terms if the fraction goes on indefinitely?

Is the mean of the squares of two numbers greater than, or less than, the square of their means?

Three points A, B and C lie in this order on a line, and P is any point in the plane. Use the Cosine Rule to prove the following statement.

Imagine two identical cylindrical pipes meeting at right angles and think about the shape of the space which belongs to both pipes. Early Chinese mathematicians call this shape the mouhefanggai.

ABCD is a square. P is the midpoint of AB and is joined to C. A line from D perpendicular to PC meets the line at the point Q. Prove AQ = AD.

Can you convince me of each of the following: If a square number is multiplied by a square number the product is ALWAYS a square number...

When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...

Choose a couple of the sequences. Try to picture how to make the next, and the next, and the next... Can you describe your reasoning?

Eulerian and Hamiltonian circuits are defined with some simple examples and a couple of puzzles to illustrate Hamiltonian circuits.

This article invites you to get familiar with a strategic game called "sprouts". The game is simple enough for younger children to understand, and has also provided experienced mathematicians with. . . .